import numpy as np from tinygrad.tensor import Tensor def layernorm(x, sz, eps=1e-5): in_shape = x.shape x = x.reshape(shape=(-1, sz)) layer_mean = x.mean(axis=(1,)) y = (x - layer_mean.reshape(shape=[-1, 1])) layer_var = (y*y).mean(axis=(1,)) ret = y.div(layer_var.add(eps).reshape(shape=[-1, 1]).sqrt()) return ret.reshape(shape=in_shape) class TransformerBlock: def __init__(self, embed_dim, num_heads): # Multi-Head Attention self.num_heads = num_heads self.head_size = embed_dim // num_heads assert self.head_size * self.num_heads == embed_dim # looks like bias is useless self.query_dense = Tensor.uniform(embed_dim, embed_dim) self.key_dense = Tensor.uniform(embed_dim, embed_dim) self.value_dense = Tensor.uniform(embed_dim, embed_dim) self.final = Tensor.uniform(embed_dim, embed_dim) self.ff1 = Tensor.uniform(embed_dim, embed_dim) self.ff2 = Tensor.uniform(embed_dim, embed_dim) def __call__(self, x): # bs x T x embed_dim bs = x.shape[0] embed_dim = self.num_heads * self.head_size inputs = x.reshape(shape=(-1, embed_dim)) # run multi head attention (bs, T, num_heads, head_size) query, key, value = [inputs.dot(y) \ .reshape(shape=(bs, -1, self.num_heads, self.head_size)) \ for y in [self.query_dense, self.key_dense, self.value_dense]] query = query.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size) key = key.transpose(order=(0,2,3,1)) # (bs, num_heads, head_size, T) value = value.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size) score = query.dot(key) * (1 / np.sqrt(self.head_size)) weights = score.softmax() # (bs, num_heads, T, T) attention = weights.dot(value).transpose(order=(0,2,1,3)) # (bs, T, num_heads, head_size) x = inputs + attention.reshape(shape=(-1, embed_dim)).dot(self.final).dropout(0.1) x = layernorm(x, embed_dim) x = x + x.dot(self.ff1).relu().dot(self.ff2).dropout(0.1) x = layernorm(x, embed_dim) return x.reshape(shape=(bs, -1, embed_dim)) class Transformer: # L = layers, H = embed_dim, A = num_heads def __init__(self, syms, maxlen, layers, embed_dim, num_heads): self.maxlen, self.syms = maxlen, syms self.embed = Tensor.uniform(maxlen+syms, embed_dim, requires_grad=False) self.tbs = [] for i in range(layers): self.tbs.append(TransformerBlock(embed_dim, num_heads)) self.final = Tensor.uniform(embed_dim, syms) def forward(self, x): bs = x.shape[0] xnp = x.cpu().data.astype(np.int32) onehot = np.zeros((bs, x.shape[1], self.maxlen+self.syms), dtype=np.float32) for i in range(x.shape[1]): onehot[range(bs), i, i] = 1 onehot[range(bs), i, self.maxlen + xnp[:, i]] = 1 onehot = onehot.reshape(bs*x.shape[1], self.maxlen+self.syms) x = Tensor(onehot, device=x.device).dot(self.embed).reshape(shape=(bs, x.shape[1], -1)) for t in self.tbs: x = t(x) x = x.reshape(shape=(-1, x.shape[-1])).dot(self.final).logsoftmax() return x.reshape(shape=(bs, -1, x.shape[-1]))