#!/usr/bin/env python import os import unittest import numpy as np from tinygrad.tensor import Tensor from tinygrad.utils import layer_init_uniform, fetch_mnist import tinygrad.optim as optim from tqdm import trange # load the mnist dataset X_train, Y_train, X_test, Y_test = fetch_mnist() # create a model class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init_uniform(784, 128)) self.l2 = Tensor(layer_init_uniform(128, 10)) def forward(self, x): return x.dot(self.l1).relu().dot(self.l2).logsoftmax() # create a model with a conv layer class TinyConvNet: def __init__(self): conv = 7 chans = 16 self.c1 = Tensor(layer_init_uniform(chans,1,conv,conv)) self.l1 = Tensor(layer_init_uniform(((28-conv+1)**2)*chans, 128)) self.l2 = Tensor(layer_init_uniform(128, 10)) def forward(self, x): x.data = x.data.reshape((-1, 1, 28, 28)) # hacks x = x.conv2d(self.c1).relu() x = x.reshape(Tensor(np.array((x.shape[0], -1)))) return x.dot(self.l1).relu().dot(self.l2).logsoftmax() def train(model, optim, steps, BS=128): losses, accuracies = [], [] for i in (t := trange(steps)): samp = np.random.randint(0, X_train.shape[0], size=(BS)) x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32)) Y = Y_train[samp] y = np.zeros((len(samp),10), np.float32) # correct loss for NLL, torch NLL loss returns one per row y[range(y.shape[0]),Y] = -10.0 y = Tensor(y) # network out = model.forward(x) # NLL loss function loss = out.mul(y).mean() loss.backward() optim.step() cat = np.argmax(out.data, axis=1) accuracy = (cat == Y).mean() # printing loss = loss.data losses.append(loss) accuracies.append(accuracy) t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy)) def evaluate(model): def numpy_eval(): Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32))) Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1) return (Y_test == Y_test_preds).mean() accuracy = numpy_eval() print("test set accuracy is %f" % accuracy) assert accuracy > 0.95 class TestMNIST(unittest.TestCase): def test_mnist_conv(self): np.random.seed(1337) model = TinyConvNet() optimizer = optim.Adam([model.c1, model.l1, model.l2], lr=0.001) train(model, optimizer, steps=400) evaluate(model) def test_mnist_sgd(self): np.random.seed(1337) model = TinyBobNet() optimizer = optim.SGD([model.l1, model.l2], lr=0.001) train(model, optimizer, steps=1000) evaluate(model) def test_mnist_rmsprop(self): np.random.seed(1337) model = TinyBobNet() optimizer = optim.RMSprop([model.l1, model.l2], lr=0.001) train(model, optimizer, steps=1000) evaluate(model) if __name__ == '__main__': unittest.main()