import numpy as np import unittest, os from tinygrad.codegen.kernel import tensor_cores from tinygrad.codegen.linearizer import Linearizer, UOps from tinygrad.ops import Compiled, Device, MovementOps, LazyOp from tinygrad.tensor import Tensor from tinygrad.jit import CacheCollector from tinygrad.realize import run_schedule from tinygrad.helpers import dtypes, prod class TestLinearizer(unittest.TestCase): def test_arg_dedup(self): if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled supports cache") a, b = Tensor.randn(4), Tensor.randn(4) np_a, np_b = a.numpy(), b.numpy() CacheCollector.start() c = ((a.shrink(((0, 2),)) - a.shrink(((2, 4),))) - (b.shrink(((0, 2),)) - b.shrink(((2, 4),)))).realize() rawbufs = CacheCollector.finish()[0][1] assert len(rawbufs) == 3 and set(rawbufs[1:]) == {a.lazydata.realized, b.lazydata.realized} np_c = (np_a[:2] - np_a[2:]) - (np_b[:2] - np_b[2:]) np.testing.assert_allclose(np_c, c.numpy(), atol=1e-4, rtol=1e-4) def test_load_dedup(self): # for different leaves in the AST, the same loads may occur. if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled uses linearizer") a = Tensor.randn(4).realize() # these are of size 3 to avoid float4 coalesce r = a[:-1] + a[1:] k = Linearizer(r.lazydata.schedule()[-1].ast) k.upcast() k.linearize() num_loads = len([uop for uop in k.uops if uop.uop == UOps.LOAD]) assert num_loads <= 4, "more load uops than needed" assert num_loads >= 4, "unexpected number of uops, maybe this test needs updating?" def test_upcast_cse(self): # when upcasting, within a subtree, there may be common expressions. if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled uses linearizer") a, b = Tensor.randn(1).realize(), Tensor.randn(1).realize() r = a.expand([2]) + b.expand([2]) k = Linearizer(r.lazydata.schedule()[-1].ast) k.upcast() k.linearize() num_ops = len([uop for uop in k.uops if uop.uop == UOps.ALU]) assert num_ops <= 1, "more alu uops than needed" def test_zero_fold(self): if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled uses linearizer") a, b = Tensor.randn(1).realize(), Tensor.randn(1).realize() r = Tensor.stack([a, b]) k = Linearizer(r.lazydata.schedule()[-1].ast) k.upcast() k.linearize() num_ops = len([uop for uop in k.uops if uop.uop == UOps.ALU]) assert num_ops == 0, "more alu uops than needed" @unittest.skip("constant folding not supported yet") def test_constant_fold(self): if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled uses linearizer") a, b = Tensor(2), Tensor(3) r = a * b k = Linearizer(r.lazydata.schedule()[-1][0]) k.linearize() num_ops = len([uop for uop in k.uops if uop.uop in [UOps.LOAD, UOps.ALU]]) assert num_ops <= 0, "more load or alu uops than needed" def test_tensor_cores(self): if not isinstance(Device[Device.DEFAULT], Compiled): self.skipTest("Only Compiled uses linearizer") if Device.DEFAULT not in tensor_cores: self.skipTest("No tensor cores for device") for tc in tensor_cores[Device.DEFAULT]: if tc.arch is not None and tc.arch != os.uname().machine: continue a, b = Tensor.rand(tc.dims[0], tc.dims[2], dtype=tc.dtype_in), Tensor.rand(tc.dims[2], tc.dims[1], dtype=tc.dtype_in) np_a, np_b = a.numpy(), b.numpy() if tc.dtype_out != tc.dtype_in: r = (a.reshape(tc.dims[0], 1, tc.dims[2]) * b.permute(1,0).reshape(1, tc.dims[1], tc.dims[2])).cast(tc.dtype_out).sum(axis=2) else: r = a @ b realized_ast, _ = helper_realized_ast(r) k = Linearizer(realized_ast) k.apply_tensor_cores(1) k.linearize() assert len([uop for uop in k.uops if uop.uop == UOps.WMMA]) == 1, "tensor core not triggered" np_c = np_a @ np_b np.testing.assert_allclose(np_c, r.numpy(), atol=5e-3, rtol=1e-4) def helper_realized_ast(r:Tensor): s = r.lazydata.schedule() run_schedule(s[:-1]) # run all kernels except the last one # now all input LazyBuffers buffers in s[-1] should be realized output_buffer = Device[s[-1].out.device].buffer(prod((s if isinstance(s, int) else s.max for s in s[-1].out.shape)), s[-1].out.dtype, **s[-1].out._device_extra_args()) # allocate an output buffer return s[-1].ast, [output_buffer] + [l.realized for l in s[-1].inputs] class TestFloat4(unittest.TestCase): def setUp(self): if not isinstance(Device[Device.DEFAULT], Compiled) or not Device[Device.DEFAULT].linearizer_opts.supports_float4: self.skipTest("Device does not support float4") @staticmethod def count_float4(k): return (len([uop for uop in k.uops if uop.uop == UOps.LOAD and uop.dtype == dtypes._float4]), len([uop for uop in k.uops if uop.uop == UOps.STORE and len(uop.vin) == 3 and uop.vin[2].dtype == dtypes._float4])) # TODO: express opts below as auto opts def test_float4_basic(self): a = Tensor.rand(2, 8).realize() b = Tensor.rand(2, 8).realize() c = a + b s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.hand_coded_optimizations() k.linearize() assert TestFloat4.count_float4(k) == (2, 1) def test_float4_multidim(self): a = Tensor.rand(2, 8).realize() b = Tensor.rand(2, 8).realize() c = a + b s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.shift_to(0, 4) # float4 dimension k.shift_to(0, 2, insert_before=k.shape_len-1) k.upcast() k.upcast() k.local_dims += 1 k.linearize() assert TestFloat4.count_float4(k) == (4, 2) def test_float4_unaligned_load(self): a = Tensor.rand(9).realize().shrink(((1, 9),)) b = Tensor.rand(9).realize().shrink(((1, 9),)) c = a + b s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.hand_coded_optimizations() # implicit trigger float4 dim k.linearize() assert TestFloat4.count_float4(k) == (0, 1) def test_float4_multidim_unaligned_load(self): a = Tensor.rand(2, 9).realize().shrink(((0, 2), (1, 9),)) b = Tensor.rand(2, 9).realize().shrink(((0, 2), (1, 9),)) c = a + b s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.shift_to(len(k.full_unupcasted_shape)-1, 4) # manual trigger float4 dim k.upcast() k.shift_to(len(k.full_unupcasted_shape)-1, 2, insert_before=k.shape_len-1) k.upcast() k.local_dims += 1 k.linearize() assert TestFloat4.count_float4(k) == (0, 2) def test_float4_sometimes_unaligned(self): a = Tensor.rand(1, 1, 8).realize() b = Tensor.rand(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5))) c = a.conv2d(b) # only the first and last conv dot products are aligned in a, and b is never aligned, so no # float4 should be emitted (the reduce axis of size 4 is the float4 axis here) s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.upcast() k.linearize() assert TestFloat4.count_float4(k) == (0, 0) def test_float4_multidim_sometimes_unaligned(self): a = Tensor.rand(1, 1, 7).realize() b = Tensor.rand(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5))) c = a.conv2d(b) # the first conv dot product is aligned in a. If we upcast the output and reduce # dimension, then we could do float4 for only that one set of loads, but we currently # don't. s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.upcast() k.upcast() k.linearize() assert TestFloat4.count_float4(k) == (0, 1) def test_float4_noncontiguous(self): a = Tensor.rand(4, 2).realize() b = Tensor.rand(4, 2).realize() c = a + b # we will upcast the top axis of sz 4. they should not be coalesced into float4, # since the top axis is not contiguous. s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.shift_to(0, 4, top=True) # top axes are float4 axes k.upcast() k.linearize() assert TestFloat4.count_float4(k) == (0, 0) def test_float4_expand(self): a = Tensor.rand(9).realize().shrink(((1, 9),)) b = Tensor.rand(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,)) c = a + b # we will upcast the top axis of sz 4. they should not be coalesced into float4, # since the top axis is not contiguous. s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.shift_to(0, 4) # float4 axis k.upcast() k.linearize() assert TestFloat4.count_float4(k) == (0, 1) def test_float4_heterogeneous(self): a = Tensor.rand(8).realize() b = Tensor.rand(9).realize().shrink(((1, 9),)) c = a + b # should float4 b but not a s = c.lazydata.schedule()[0] k = Linearizer(s.ast) k.shift_to(0, 4) # float4 axis k.upcast() k.linearize() assert TestFloat4.count_float4(k) == (1, 1) if __name__ == '__main__': unittest.main()