from tinygrad.tensor import Tensor import tinygrad.nn as nn from extra.utils import fetch, fake_torch_load, get_child import numpy as np class BasicBlock: expansion = 1 def __init__(self, in_planes, planes, stride=1): self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2D(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2D(planes) self.downsample = [] if stride != 1 or in_planes != self.expansion*planes: self.downsample = [ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2D(self.expansion*planes) ] def __call__(self, x): out = self.bn1(self.conv1(x)).relu() out = self.bn2(self.conv2(out)) out = out + x.sequential(self.downsample) out = out.relu() return out class Bottleneck: expansion = 4 def __init__(self, in_planes, planes, stride=1): self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2D(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=stride, bias=False) self.bn2 = nn.BatchNorm2D(planes) self.conv3 = nn.Conv2d(planes, self.expansion *planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2D(self.expansion*planes) self.downsample = [] if stride != 1 or in_planes != self.expansion*planes: self.downsample = [ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2D(self.expansion*planes) ] def __call__(self, x): out = self.bn1(self.conv1(x)).relu() out = self.bn2(self.conv2(out)).relu() out = self.bn3(self.conv3(out)) out = out + x.sequential(self.downsample) out = out.relu() return out class ResNet: # def __init__(self, block, num_blocks, num_classes=10, url=None): def __init__(self, num, num_classes): self.num = num self.block = { 18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck }[num] self.num_blocks = { 18: [2,2,2,2], 34: [3,4,6,3], 50: [3,4,6,3], 101: [3,4,23,3], 152: [3,8,36,3] }[num] self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, bias=False, padding=3) self.bn1 = nn.BatchNorm2D(64) self.layer1 = self._make_layer(self.block, 64, self.num_blocks[0], stride=2) self.layer2 = self._make_layer(self.block, 128, self.num_blocks[1], stride=2) self.layer3 = self._make_layer(self.block, 256, self.num_blocks[2], stride=2) self.layer4 = self._make_layer(self.block, 512, self.num_blocks[3], stride=2) self.fc = {"weight": Tensor.uniform(512 * self.block.expansion, num_classes), "bias": Tensor.zeros(num_classes)} def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return layers def forward(self, x): out = self.bn1(self.conv1(x)).relu() out = out.sequential(self.layer1) out = out.sequential(self.layer2) out = out.sequential(self.layer3) out = out.sequential(self.layer4) out = out.mean(3).mean(2) out = out.linear(**self.fc).logsoftmax() return out def __call__(self, x): return self.forward(x) def load_from_pretrained(self): # TODO replace with fake torch load model_urls = { 18: 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 34: 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 50: 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 101: 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 152: 'https://download.pytorch.org/models/resnet152-b121ed2d.pth' } self.url = model_urls[self.num] from torch.hub import load_state_dict_from_url state_dict = load_state_dict_from_url(self.url, progress=True) for k, v in state_dict.items(): obj = get_child(self, k) dat = v.detach().numpy().T if "fc.weight" in k else v.detach().numpy() if 'fc.' in k and obj.shape != dat.shape: print("skipping fully connected layer") continue # Skip FC if transfer learning assert obj.shape == dat.shape, (k, obj.shape, dat.shape) obj.assign(dat) ResNet18 = lambda num_classes=1000: ResNet(18, num_classes=num_classes) ResNet34 = lambda num_classes=1000: ResNet(34, num_classes=num_classes) ResNet50 = lambda num_classes=1000: ResNet(50, num_classes=num_classes) ResNet101 = lambda num_classes=1000: ResNet(101, num_classes=num_classes) ResNet152 = lambda num_classes=1000: ResNet(152, num_classes=num_classes)