#!/usr/bin/env python import unittest import numpy as np from tinygrad.tensor import Tensor, Device from tinygrad.nn import BatchNorm2d, Conv2d, Linear, GroupNorm, LayerNorm import torch class TestNN(unittest.TestCase): def test_batchnorm2d(self, training=False): sz = 4 # create in tinygrad Tensor.training = training bn = BatchNorm2d(sz, eps=1e-5, track_running_stats=training) bn.weight = Tensor.randn(sz) bn.bias = Tensor.randn(sz) bn.running_mean = Tensor.randn(sz) bn.running_var = Tensor.randn(sz) bn.running_var.numpy()[bn.running_var.numpy() < 0] = 0 # create in torch with torch.no_grad(): tbn = torch.nn.BatchNorm2d(sz).eval() tbn.training = training tbn.weight[:] = torch.tensor(bn.weight.numpy()) tbn.bias[:] = torch.tensor(bn.bias.numpy()) tbn.running_mean[:] = torch.tensor(bn.running_mean.numpy()) tbn.running_var[:] = torch.tensor(bn.running_var.numpy()) np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6) np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5, atol=1e-6) # trial inn = Tensor.randn(2, sz, 3, 3) # in tinygrad outt = bn(inn) # in torch toutt = tbn(torch.tensor(inn.cpu().numpy())) # close np.testing.assert_allclose(outt.numpy(), toutt.detach().numpy(), rtol=5e-4, atol=1e-6) np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6) # TODO: this is failing # np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5) def test_batchnorm2d_training(self): self.test_batchnorm2d(True) def test_linear(self): def _test_linear(x): # create in tinygrad model = Linear(in_dim, out_dim) z = model(x) # create in torch with torch.no_grad(): torch_layer = torch.nn.Linear(in_dim, out_dim).eval() torch_layer.weight[:] = torch.tensor(model.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(model.bias.numpy(), dtype=torch.float32) torch_x = torch.tensor(x.cpu().numpy(), dtype=torch.float32) torch_z = torch_layer(torch_x) # test np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) BS, T, in_dim, out_dim = 4, 2, 8, 16 _test_linear(Tensor.randn(BS, in_dim)) _test_linear(Tensor.randn(BS, T, in_dim)) # test with more dims def test_conv2d(self): BS, C1, H, W = 4, 16, 224, 224 C2, K, S, P = 64, 7, 2, 1 # create in tinygrad layer = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P) # create in torch with torch.no_grad(): torch_layer = torch.nn.Conv2d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.uniform(BS, C1, H, W) z = layer(x) torch_x = torch.tensor(x.cpu().numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) def test_groupnorm(self): BS, H, W, C, G = 20, 10, 10, 6, 3 # create in tinygrad layer = GroupNorm(G, C) # create in torch with torch.no_grad(): torch_layer = torch.nn.GroupNorm(G, C).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(BS, C, H, W) z = layer(x) torch_x = torch.tensor(x.cpu().numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_layernorm(self): N, C, H, W = 20, 5, 10, 10 # create in tinygrad layer = LayerNorm([H, W]) # create in torch with torch.no_grad(): torch_layer = torch.nn.LayerNorm([H, W]).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(N, C, H, W) z = layer(x) torch_x = torch.tensor(x.cpu().numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) if __name__ == '__main__': unittest.main()