#!/usr/bin/env python import unittest import numpy as np import torch from tinygrad import Tensor, Device, TinyJit from tinygrad.helpers import CI from tinygrad.nn import BatchNorm2d, Conv1d,ConvTranspose1d, Conv2d,ConvTranspose2d, Linear, GroupNorm, LayerNorm,LayerNorm2d, Embedding, InstanceNorm @unittest.skipIf(CI and Device.DEFAULT == "CUDA", "slow") class TestNN(unittest.TestCase): @unittest.skipIf(Device.DEFAULT == "WEBGPU", "no int64 on WebGPU") def test_sparse_cat_cross_entropy(self): # create in tinygrad input = Tensor.randn(3, 5) target = Tensor.randint((3,), low=0, high=4) loss = input.sparse_categorical_crossentropy(target) torch_input = torch.tensor(input.numpy()) torch_target = torch.tensor(target.numpy(), dtype=torch.long) torch_loss = torch.nn.CrossEntropyLoss(reduction='mean')(torch_input, torch_target) np.testing.assert_allclose(loss.numpy(), torch_loss.detach().numpy(), atol=1e-5, rtol=1e-6) def test_batchnorm2d(self, training=False): with Tensor.train(training): szs = [4, 8, 16, 32] for sz in szs: # create in tinygrad bn = BatchNorm2d(sz, eps=1e-5, track_running_stats=training) bn.weight = Tensor.randn(sz) bn.bias = Tensor.randn(sz) bn.running_mean = Tensor.randn(sz) bn.running_var = Tensor.randn(sz) bn.running_var.numpy()[bn.running_var.numpy() < 0] = 0 # create in torch with torch.no_grad(): tbn = torch.nn.BatchNorm2d(sz).eval() tbn.training = training tbn.weight[:] = torch.tensor(bn.weight.numpy()) tbn.bias[:] = torch.tensor(bn.bias.numpy()) tbn.running_mean[:] = torch.tensor(bn.running_mean.numpy()) tbn.running_var[:] = torch.tensor(bn.running_var.numpy()) np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6) np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5, atol=1e-6) # trial inn = Tensor.randn(2, sz, 3, 3) # in tinygrad outt = bn(inn) # in torch toutt = tbn(torch.tensor(inn.numpy())) # close np.testing.assert_allclose(outt.numpy(), toutt.detach().numpy(), rtol=5e-4, atol=1e-6) np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6) np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5, atol=1e-6) def test_batchnorm2d_training(self): self.test_batchnorm2d(True) def test_linear(self): def _test_linear(x, in_dim, out_dim): # create in tinygrad model = Linear(in_dim, out_dim) z = model(x) # create in torch with torch.no_grad(): torch_layer = torch.nn.Linear(in_dim, out_dim).eval() torch_layer.weight[:] = torch.tensor(model.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(model.bias.numpy(), dtype=torch.float32) torch_x = torch.tensor(x.numpy(), dtype=torch.float32) torch_z = torch_layer(torch_x) # test np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) BS, T, in_dim, out_dim = 4, 2, 8, 16 _test_linear(Tensor.randn(BS, in_dim), in_dim, out_dim) _test_linear(Tensor.randn(BS, T, in_dim), in_dim, out_dim) # test with more dims def test_conv1d(self): BS, C1, W = 4, 16, 224//4 C2, K, S, P = 64, 7, 2, 1 # create in tinygrad layer = Conv1d(C1, C2, kernel_size=K, stride=S, padding=P) # create in torch with torch.no_grad(): torch_layer = torch.nn.Conv1d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.uniform(BS, C1, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) def test_conv2d(self): BS, C1, H, W = 4, 16, 224//4, 224//4 C2, K, S, P = 64, 7, 2, 1 # create in tinygrad layer = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P) # create in torch with torch.no_grad(): torch_layer = torch.nn.Conv2d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.uniform(BS, C1, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) @unittest.skipIf(Device.DEFAULT not in {"CPU", "TORCH"}, "Takes too long to compile for Compiled backends") def test_conv2d_winograd(self): BS, C1, H, W = 2, 8, 16, 16 C2, K, S, P = 8, 3, 1, 1 # create in tinygrad layer = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P) layer.weight.requires_grad = True layer.bias.requires_grad = True # create in torch torch_layer = torch.nn.Conv2d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight = torch.nn.Parameter(torch.tensor(layer.weight.numpy(), dtype=torch.float32)) torch_layer.bias = torch.nn.Parameter(torch.tensor(layer.bias.numpy(), dtype=torch.float32)) # test x = Tensor.uniform(BS, C1, H, W, requires_grad=True) old_wino = Tensor.wino Tensor.wino = True z = layer(x) Tensor.wino = old_wino torch_x = torch.tensor(x.numpy(), requires_grad=True) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) m = z.mean() m.backward() gw = layer.weight.grad.realize() gb = layer.bias.grad.realize() gx = x.grad.realize() torch_z.mean().backward() np.testing.assert_allclose(gw.numpy(), torch_layer.weight.grad.numpy(), atol=5e-4, rtol=1e-5) np.testing.assert_allclose(gb.numpy(), torch_layer.bias.grad.numpy(), atol=5e-4, rtol=1e-5) np.testing.assert_allclose(gx.numpy(), torch_x.grad.numpy(), atol=5e-4, rtol=1e-5) @unittest.skipIf(CI and Device.DEFAULT == "WEBGPU", "runs out of memory in CI") def test_conv_transpose1d(self): BS, C1, W = 4, 16, 224//4 C2, K, S, P = 64, 7, 2, 1 # create in tinygrad layer = ConvTranspose1d(C1, C2, kernel_size=K, stride=S, padding=P) # create in torch with torch.no_grad(): torch_layer = torch.nn.ConvTranspose1d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.uniform(BS, C1, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) @unittest.skipIf(CI and Device.DEFAULT == "WEBGPU", "runs out of memory in CI") def test_conv_transpose2d(self): BS, C1, H, W = 4, 16, 224//4, 224//4 C2, K, S, P = 64, 7, 2, 1 # create in tinygrad layer = ConvTranspose2d(C1, C2, kernel_size=K, stride=S, padding=P) # create in torch with torch.no_grad(): torch_layer = torch.nn.ConvTranspose2d(C1, C2, kernel_size=K, stride=S, padding=P).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.uniform(BS, C1, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5) def test_groupnorm(self): BS, H, W, C, G = 20, 10, 10, 6, 3 # create in tinygrad layer = GroupNorm(G, C) # create in torch with torch.no_grad(): torch_layer = torch.nn.GroupNorm(G, C).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(BS, C, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_layernorm(self): N, C, H, W = 20, 5, 10, 10 # create in tinygrad layer = LayerNorm([H, W]) # create in torch with torch.no_grad(): torch_layer = torch.nn.LayerNorm([H, W]).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(N, C, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_layernorm_2d(self): N, C, H, W = 20, 5, 10, 10 # create in tinygrad layer = LayerNorm2d(C) # create in torch with torch.no_grad(): torch_layer = torch.nn.LayerNorm([C]).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(N, C, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x.permute(0,2,3,1)).permute(0,3,1,2) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_instancenorm_2d(self): N, C, H, W = 20, 5, 10, 10 # create in tinygrad layer = InstanceNorm(C) # create in torch with torch.no_grad(): torch_layer = torch.nn.InstanceNorm2d(C, affine=True).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(N, C, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_instancenorm_3d(self): N, C, D, H, W = 20, 5, 3, 10, 10 # create in tinygrad layer = InstanceNorm(C) # create in torch with torch.no_grad(): torch_layer = torch.nn.InstanceNorm3d(C, affine=True).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32) # test x = Tensor.randn(N, C, D, H, W) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3) def test_embedding(self): B, T, embed_size, vocab_size = 4, 10, 20, 28 # create in tinygrad layer = Embedding(vocab_size, embed_size) with torch.no_grad(): torch_layer = torch.nn.Embedding(vocab_size, embed_size).eval() torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32) # test x = Tensor(np.random.randint(0, vocab_size, (B, T))) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=1e-8, rtol=1e-8) # test with empty input length x = Tensor(np.random.randint(0, vocab_size, (B, 0))) z = layer(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=1e-8, rtol=1e-8) # test with jit enabled @TinyJit def layer_jit(x): return layer(x).realize() for _ in range(3): x = Tensor(np.random.randint(0, vocab_size, (B, T))) z = layer_jit(x) torch_x = torch.tensor(x.numpy()) torch_z = torch_layer(torch_x) np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=1e-8, rtol=1e-8) if __name__ == '__main__': unittest.main()