# thanks to https://github.com/openai/whisper for a good chunk of MIT licensed code import sys, base64, multiprocessing, itertools from typing import Optional, Union, Literal, List from tinygrad import Tensor, TinyJit, Variable, nn from tinygrad.nn.state import torch_load, load_state_dict from tinygrad.helpers import getenv, DEBUG, fetch import numpy as np import librosa class MultiHeadAttention: def __init__(self, n_state, n_head, kv_caching: Literal['cross', 'self']=None, max_self_attn_cache_len=None): self.n_head = n_head self.query = nn.Linear(n_state, n_state) self.key = nn.Linear(n_state, n_state, bias=False) self.value = nn.Linear(n_state, n_state) self.out = nn.Linear(n_state, n_state) self.kv_caching = kv_caching self.max_self_attn_cache_len = max_self_attn_cache_len def __call__(self, x:Tensor, xa:Optional[Tensor]=None, mask:Optional[Tensor]=None, len: Union[Variable,int]=None): if self.kv_caching == 'cross': if xa is not None: k, v = self.key(xa), self.value(xa) if not hasattr(self, 'cache_k'): self.cache_k, self.cache_v = k, v else: self.cache_k.assign(k).realize() self.cache_v.assign(v).realize() else: k, v = self.cache_k, self.cache_v else: k, v = self.key(x), self.value(x) if self.kv_caching == 'self': if not hasattr(self, 'cache_k'): self.cache_k = Tensor.zeros(x.shape[0], self.max_self_attn_cache_len, x.shape[2]) self.cache_v = Tensor.zeros(x.shape[0], self.max_self_attn_cache_len, x.shape[2]) k = self.cache_k.shrink((None, (0, len), None)).cat(k, dim=1) v = self.cache_v.shrink((None, (0, len), None)).cat(v, dim=1) padding = self.max_self_attn_cache_len-len-x.shape[1] self.cache_k.assign(k.pad((None, (0, padding), None)).contiguous()).realize() self.cache_v.assign(v.pad((None, (0, padding), None)).contiguous()).realize() q = self.query(x) n_ctx = q.shape[1] assert(q.shape[-1] == k.shape[-1] == v.shape[-1]) head_dim = q.shape[-1] // self.n_head q = q.reshape(*q.shape[:2], self.n_head, head_dim).permute(0, 2, 1, 3) k = k.reshape(*k.shape[:2], self.n_head, head_dim).permute(0, 2, 1, 3) v = v.reshape(*v.shape[:2], self.n_head, head_dim).permute(0, 2, 1, 3) attn = Tensor.scaled_dot_product_attention(q, k, v, mask[:n_ctx,:n_ctx] if mask is not None else None) wv = attn.permute(0, 2, 1, 3).flatten(start_dim=2) return self.out(wv) class ResidualAttentionBlock: def __init__(self, n_state, n_head, is_decoder_block=False, max_self_attn_cache_len=None): self.attn = MultiHeadAttention(n_state, n_head, kv_caching='self' if is_decoder_block else None, max_self_attn_cache_len=max_self_attn_cache_len) self.attn_ln = nn.LayerNorm(n_state) self.cross_attn = MultiHeadAttention(n_state, n_head, kv_caching='cross') if is_decoder_block else None self.cross_attn_ln = nn.LayerNorm(n_state) if is_decoder_block else None self.mlp = [nn.Linear(n_state, n_state*4), Tensor.gelu, nn.Linear(n_state*4, n_state)] self.mlp_ln = nn.LayerNorm(n_state) def __call__(self, x, xa=None, mask=None, len: Union[Variable, int]=None): x = x + self.attn(self.attn_ln(x), mask=mask, len=len) if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa) x = x + self.mlp_ln(x).sequential(self.mlp) return x.realize() class AudioEncoder: def __init__(self, n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, **_): self.conv1 = nn.Conv1d(n_mels, n_audio_state, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(n_audio_state, n_audio_state, kernel_size=3, stride=2, padding=1) self.blocks = [ResidualAttentionBlock(n_audio_state, n_audio_head) for _ in range(n_audio_layer)] self.ln_post = nn.LayerNorm(n_audio_state) self.positional_embedding = Tensor.empty(n_audio_ctx, n_audio_state) self.encode = TinyJit(self.__call__) def __call__(self, x): x = self.conv1(x).gelu() x = self.conv2(x).gelu() x = x.permute(0, 2, 1) x = x + self.positional_embedding[:x.shape[1]] x = x.sequential(self.blocks) x = self.ln_post(x) return x.realize() class TextDecoder: def __init__(self, n_vocab, n_text_ctx, n_text_state, n_text_head, n_text_layer, **_): self.max_tokens_to_sample = n_text_ctx // 2 self.max_self_attn_cache_len = self.max_tokens_to_sample * 2 + 5 # roughly prompt + start toks + max_tokens_to_sample self.token_embedding = nn.Embedding(n_vocab, n_text_state) self.positional_embedding = Tensor.empty(n_text_ctx, n_text_state) self.blocks = [ResidualAttentionBlock(n_text_state, n_text_head, is_decoder_block=True, max_self_attn_cache_len=self.max_self_attn_cache_len) for _ in range(n_text_layer)] self.ln = nn.LayerNorm(n_text_state) self.mask = Tensor.full((n_text_ctx, n_text_ctx), -np.inf).triu(1).realize() self.blocks_start_tok = [TinyJit(block.__call__) for block in self.blocks] self.blocks_after_start_tok = [TinyJit(block.__call__) for block in self.blocks] self.start_output_tok = TinyJit(self.output_tok) self.after_start_output_tok = TinyJit(self.output_tok) # if layernorm supported symbolic shapes, we wouldn't need this hacky 'streaming' param (which should be called something more descriptive like 'x_is_start_toks_only') def __call__(self, x: Tensor, pos: int, encoded_audio: Tensor, streaming=False): seqlen = x.shape[-1] x = self.token_embedding(x) + self.positional_embedding[pos:pos+seqlen] if pos == 0: for block in (self.blocks if streaming else self.blocks_start_tok): x = block(x, xa=encoded_audio, mask=self.mask, len=0) # pass xa for cross attn kv caching return self.output_tok(x) if streaming else self.start_output_tok(x) else: for block in self.blocks_after_start_tok: len_v = Variable("self_attn_cache_len", 1, self.max_self_attn_cache_len).bind(pos) x = block(x, mask=self.mask, len=len_v) return self.after_start_output_tok(x) def output_tok(self, x): return (self.ln(x) @ self.token_embedding.weight.T).realize() class Whisper: def __init__(self, dims, batch_size=1): self.encoder = AudioEncoder(**dims) self.decoder = TextDecoder(**dims) self.is_multilingual = dims["n_vocab"] == 51865 self.batch_size = batch_size RATE = 16000 SEGMENT_SECONDS=30 SAMPLES_PER_SEGMENT = RATE * SEGMENT_SECONDS # 480000 N_FFT = 400 HOP_LENGTH = 160 N_MELS = 80 FRAMES_PER_SEGMENT = SAMPLES_PER_SEGMENT // HOP_LENGTH # 3000 def prep_audio(waveforms: List[np.ndarray], batch_size: int, truncate=False) -> np.ndarray: """ :param waveforms: A list of possibly variable length 16000Hz audio samples :param batch_size: The batch_size associated with the Whisper model being used to transcribe the audio. Used to prevent JIT mismatch errors since the encoder does not accept symbolic shapes :param truncate: If true, truncates (or pads) audio to exactly 30s for a single encoder pass :return: mel spectrogram of the given waveforms """ def pad_or_trim(arr, target_len): curr_len = len(arr) if curr_len == target_len: return arr elif curr_len < target_len: return np.pad(arr, (0, target_len - curr_len), 'constant') else: return arr[:target_len] max_len = SAMPLES_PER_SEGMENT if truncate else max(len(wav) for wav in waveforms) if (r := max_len % SAMPLES_PER_SEGMENT) > 0: max_len += SAMPLES_PER_SEGMENT - r waveforms = np.array(list(map(lambda w: pad_or_trim(w, max_len), waveforms))) assert waveforms.shape[0] <= batch_size if waveforms.shape[0] < batch_size: # we could have a symbolic batch_size dim instead of manually padding here if conv/layernorm supported symbolic shapes waveforms = np.pad(waveforms, pad_width=((0, batch_size - waveforms.shape[0]), (0, 0))) stft = librosa.stft(waveforms, n_fft=N_FFT, hop_length=HOP_LENGTH, window='hann', dtype=np.csingle) magnitudes = np.absolute(stft[..., :-1]) ** 2 mel_spec = librosa.filters.mel(sr=RATE, n_fft=N_FFT, n_mels=N_MELS) @ magnitudes log_spec = np.log10(np.clip(mel_spec, 1e-10, None)) log_spec = np.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec LANGUAGES = { "en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", } def get_encoding(encoding_name): with fetch(f"https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/{encoding_name}.tiktoken").open() as f: ranks = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in f if line)} n_vocab = len(ranks) specials = [ "<|endoftext|>", "<|startoftranscript|>", *[f"<|{lang}|>" for lang in LANGUAGES.keys()], "<|translate|>", "<|transcribe|>", "<|startoflm|>", "<|startofprev|>", "<|nospeech|>", "<|notimestamps|>", *[f"<|{i * 0.02:.2f}|>" for i in range(1501)], ] special_tokens = dict(zip(specials, itertools.count(n_vocab))) n_vocab += len(specials) import tiktoken return tiktoken.Encoding( name=encoding_name, explicit_n_vocab=n_vocab, pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""", mergeable_ranks=ranks, special_tokens=special_tokens) MODEL_URLS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def init_whisper(model_name="tiny.en", batch_size=1): assert MODEL_URLS[model_name] is not None filename = fetch(MODEL_URLS[model_name]) state = torch_load(filename) model = Whisper(state['dims'], batch_size) load_state_dict(model, state['model_state_dict'], strict=False) enc = get_encoding("multilingual" if model.is_multilingual else "gpt2") return model, enc def load_file_waveform(filename): waveform, _ = librosa.load(filename, sr=RATE) return waveform def transcribe_file(model, enc, filename): return transcribe_waveform(model, enc, [load_file_waveform(filename)]) def transcribe_waveform(model, enc, waveforms, truncate=False): """ Expects an array of shape (N,S) where N is the number waveforms to transcribe in parallel and S is number of 16000Hz samples Returns the transcribed text if a single waveform is provided, or an array of transcriptions if multiple are provided """ N_audio = len(waveforms) log_spec = prep_audio(waveforms, model.batch_size, truncate) if log_spec.shape[-1] > FRAMES_PER_SEGMENT and N_audio > 1: # we don't support multi-segment batching because the size of the prompt tokens would be different for each item in the batch # if we really want this feature, we can consider padding or trimming prompt tokens of varying lengths to make them consistent raise Exception("Multi-segment transcription not supported with batch audio input") start_tokens = [enc._special_tokens["<|startoftranscript|>"]] if model.is_multilingual: # TODO detect language language_token = enc._special_tokens["<|startoftranscript|>"] + 1 + tuple(LANGUAGES.keys()).index("en") start_tokens.append(language_token) start_tokens.append(enc._special_tokens["<|transcribe|>"]) start_tokens.append(enc._special_tokens["<|notimestamps|>"]) transcription_start_index = len(start_tokens) eot = enc._special_tokens["<|endoftext|>"] transcription_tokens = [np.array([], dtype=np.int32)] * log_spec.shape[0] for curr_frame in range(0, log_spec.shape[-1], FRAMES_PER_SEGMENT): encoded_audio = model.encoder.encode(Tensor(log_spec[:, :, curr_frame:curr_frame + FRAMES_PER_SEGMENT])) pos = 0 curr_segment_tokens = np.tile(start_tokens, (log_spec.shape[0], 1)) if curr_frame > 0: # pass the previously inferred tokens as 'prompt' - https://github.com/openai/whisper/discussions/117#discussioncomment-3727051 prompt = np.concatenate(( [enc._special_tokens["<|startofprev|>"]], transcription_tokens[0][-model.decoder.max_tokens_to_sample+1:], start_tokens)) curr_segment_tokens = np.tile(prompt, (log_spec.shape[0], 1)) transcription_start_index = len(curr_segment_tokens[0]) for i in range(model.decoder.max_tokens_to_sample): out = model.decoder(Tensor(curr_segment_tokens if i == 0 else curr_segment_tokens[:, -1:]), pos, encoded_audio, streaming=curr_frame > 0) next_tokens = out[:, -1].argmax(axis=-1).numpy().astype(np.int32) next_tokens[curr_segment_tokens[:, -1] == eot] = eot curr_segment_tokens = np.concatenate((curr_segment_tokens, next_tokens.reshape(-1, 1)), axis=1) pos = curr_segment_tokens.shape[-1] - 1 if DEBUG >= 1: print(i, list(map(lambda tokens: enc.decode(tokens), curr_segment_tokens))) if (curr_segment_tokens[:, -1] == eot).all(): break for i, t in enumerate(curr_segment_tokens): eot_index = np.where(t == eot)[0] eot_index = None if len(eot_index) == 0 else eot_index[0] transcription_tokens[i] = np.concatenate((transcription_tokens[i], t[transcription_start_index:eot_index])) transcriptions = list(map(lambda tokens: enc.decode(tokens).strip(), transcription_tokens)) return transcriptions[:N_audio] if N_audio > 1 else transcriptions[0] CHUNK = 1600 RECORD_SECONDS = 10 def listener(q): import pyaudio p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=RATE, input=True, frames_per_buffer=CHUNK) print("listening") for _ in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) waveform = ((np.frombuffer(data, np.int16)/32768).astype(np.float32)*3) q.put(waveform) print("done listening") if __name__ == "__main__": model, enc = init_whisper("small.en" if getenv("SMALL") else "tiny.en", batch_size=1) if len(sys.argv) > 1: print(transcribe_file(model, enc, sys.argv[1])) else: # online q = multiprocessing.Queue() p = multiprocessing.Process(target=listener, args=(q,)) p.daemon = True p.start() lst = [enc._special_tokens["<|startoftranscript|>"], enc._special_tokens["<|notimestamps|>"]] total = None did_read = False for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): while not q.empty() or total is None: waveform = q.get() if total is None: total = waveform else: total = np.concatenate([total, waveform]) did_read = True if did_read: log_spec = prep_audio(total.reshape(1, -1), model.batch_size, truncate=True) encoded_audio = model.encoder.encode(Tensor(log_spec)) # pass the previously inferred tokens as 'prefix' - https://github.com/openai/whisper/discussions/117#discussioncomment-3727051 out = model.decoder(Tensor([lst]), 0, encoded_audio, streaming=True).realize() idx = int(out[0,-1].argmax().numpy().item()) lst.append(idx) dec = enc.decode(lst) print(dec) # DO NOT REMOVE PRINT. IT'S VERY IMPORTANT if dec.endswith("<|endoftext|>"): lst.pop()