Files
tinygrad/extra/gemm/amd_uop_matmul.py
2026-01-03 18:34:23 +09:00

170 lines
7.0 KiB
Python

import numpy as np
from tinygrad import Tensor, Device, Context, GlobalCounters, dtypes
from tinygrad.uop.ops import UOp, KernelInfo, sint, AxisType
from tinygrad.engine.realize import ExecItem, get_runner
from tinygrad.dtype import AddrSpace
from tinygrad.helpers import getenv
N = getenv("N", 4096)
M = K = N
run_count = getenv("CNT", 5)
# ---------------------------
# launch/config constants
# ---------------------------
WARP_SIZE = 32
# Threadblock tile sizes (block-level tile of C that a block computes)
BLOCK_N = 128 # columns of C (N-dim) per block
BLOCK_M = 128 # rows of C (M-dim) per block
BLOCK_K = 8 # K-slice per block iteration
# Register tile sizes (per-thread accumulator tile of C)
TN = 4 # columns per thread
TM = 4 # rows per thread
is_kernel5 = getenv("K5", 0)
THREADS_PER_BLOCK = 128 if is_kernel5 else 256
assert THREADS_PER_BLOCK % BLOCK_N == 0, "THREADS_PER_BLOCK must be divisible by BLOCK_N"
assert THREADS_PER_BLOCK % BLOCK_K == 0, "THREADS_PER_BLOCK must be divisible by BLOCK_K"
assert (BLOCK_N * BLOCK_K) % THREADS_PER_BLOCK == 0
assert (BLOCK_M * BLOCK_K) % THREADS_PER_BLOCK == 0
WARPS_PER_BLOCK = THREADS_PER_BLOCK // WARP_SIZE
WAVE_TILE_N = 128 if is_kernel5 else 64
WAVE_TILE_M = BLOCK_N * BLOCK_M // WARPS_PER_BLOCK // WAVE_TILE_N
assert BLOCK_N % WAVE_TILE_N == 0, "BN must be a multiple of WN"
assert BLOCK_M % WAVE_TILE_M == 0, "BM must be a multiple of WM"
WAVES_IN_BLOCK_X = BLOCK_N // WAVE_TILE_N
WAVES_IN_BLOCK_Y = BLOCK_M // WAVE_TILE_M
assert WAVES_IN_BLOCK_X * WAVES_IN_BLOCK_Y == WARPS_PER_BLOCK, "wave grid must match warps/block"
LANES_PER_WAVE_X = 8
LANES_PER_WAVE_Y = 4
ITERS_PER_WAVE_N = WAVE_TILE_N // (LANES_PER_WAVE_X * TN)
ITERS_PER_WAVE_M = WAVE_TILE_M // (LANES_PER_WAVE_Y * TM)
assert WAVE_TILE_N % (LANES_PER_WAVE_X * TN) == 0, "WAVE_TILE_N must be divisible by LANES_PER_WAVE_X*TN"
assert WAVE_TILE_M % (LANES_PER_WAVE_Y * TM) == 0, "WAVE_TILE_M must be divisible by LANES_PER_WAVE_Y*TM"
def rngs_for_shape(shape:tuple[sint, ...], rng:int, axis_type=AxisType.LOOP): return [UOp.range(s, rng+i, axis_type) for i,s in enumerate(shape)]
def copy(dest:UOp, src:UOp, rng:int, set=False, upcast=False):
assert dest.shape == src.shape
rngs = rngs_for_shape(src.shape, rng, AxisType.UPCAST if upcast else AxisType.LOOP)
copy = dest[*rngs].store(src[*rngs]).end(*rngs)
return dest.after(copy) if set else copy
def hand_spec_kernel3():
# ---------------------------
# block indices & placeholders
# ---------------------------
blockIdx_x = UOp.special(N // BLOCK_N, "gidx0")
blockIdx_y = UOp.special(N // BLOCK_M, "gidx1")
a = UOp.placeholder((N, N), dtypes.float, slot=1)
b = UOp.placeholder((N, N), dtypes.float, slot=2)
c = UOp.placeholder((N, N), dtypes.float, slot=0)
# index the output with the globals
c = c.reshape(M // BLOCK_M, BLOCK_M, N // BLOCK_N, BLOCK_N)[blockIdx_y, :, blockIdx_x, :]
# open the main reduction range
k_tile_range = UOp.range(N // BLOCK_K, 0, AxisType.REDUCE)
a = a.reshape(M // BLOCK_M, BLOCK_M, N // BLOCK_K, BLOCK_K)[blockIdx_y, :, k_tile_range, :]
b = b.reshape(N // BLOCK_K, BLOCK_K, N // BLOCK_N, BLOCK_N)[k_tile_range, :, blockIdx_x, :]
# globals are no longer used, they are already in the indexes
del blockIdx_y, blockIdx_x
# ---------------------------
# GLOBAL -> LOCAL (As, Bs)
# ---------------------------
tid = UOp.special(THREADS_PER_BLOCK, "lidx0")
# A: read BM x BK tiles (permute on store into locals)
BM_As_stride = (BLOCK_M + 4) if is_kernel5 else BLOCK_M
As = UOp.placeholder((BLOCK_K, BM_As_stride), dtypes.float, slot=0, addrspace=AddrSpace.LOCAL).shrink_to((BLOCK_K, BLOCK_M))
As_store = copy(As.permute((1,0)).reshape(-1, THREADS_PER_BLOCK)[:, tid], a.reshape(-1, THREADS_PER_BLOCK)[:, tid], rng=100)
# B: read BK x BN tiles
Bs = UOp.placeholder((BLOCK_K, BLOCK_N), dtypes.float, slot=1, addrspace=AddrSpace.LOCAL)
Bs_store = copy(Bs.reshape(-1, THREADS_PER_BLOCK)[:, tid], b.reshape(-1, THREADS_PER_BLOCK)[:, tid], rng=200)
# TODO: can we automate barrier?
barrier = UOp.barrier(As_store, Bs_store)
As, Bs = As.after(barrier), Bs.after(barrier)
# open inner k range
k = UOp.range(BLOCK_K, 3, AxisType.REDUCE)
# ---------------------------
# LOCAL -> REG (per-wave tiles)
# ---------------------------
waveIdx = (tid // WARP_SIZE) % WAVES_IN_BLOCK_X
waveIdy = (tid // WARP_SIZE) // WAVES_IN_BLOCK_X
assert waveIdy.vmax+1 == WAVES_IN_BLOCK_Y
laneIdx = (tid % WARP_SIZE) % LANES_PER_WAVE_X
laneIdy = (tid % WARP_SIZE) // LANES_PER_WAVE_X
assert laneIdy.vmax+1 == LANES_PER_WAVE_Y
A_col = UOp.placeholder((ITERS_PER_WAVE_M, TM), dtypes.float, slot=0, addrspace=AddrSpace.REG)
A_col = copy(A_col, As[k, :].reshape(WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM)[waveIdy, :, laneIdy, :], 300, set=True, upcast=True)
B_row = UOp.placeholder((ITERS_PER_WAVE_N, TN), dtypes.float, slot=1, addrspace=AddrSpace.REG)
B_row = copy(B_row, Bs[k, :].reshape(WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN)[waveIdx, :, laneIdx, :], 400, set=True, upcast=True)
# ---------------------------
# FMA: c_regs += A_col * B_row
# ---------------------------
c_regs = UOp.placeholder((ITERS_PER_WAVE_M, TM, ITERS_PER_WAVE_N, TN), dtypes.float, slot=2, addrspace=AddrSpace.REG)
i = UOp.range(c_regs.size, 16)
c_regs = c_regs.after(c_regs.flatten()[i].store(0.0).end(i))
# TODO: why don't these work as upcast?
# why if the ranges merge is it slow?!? (if you change the order on end, they will merge. big slowdown on METAL)
iterWaveM, yt, iterWaveN, xt = rngs = rngs_for_shape(c_regs.shape, 500)
sink = c_regs[*rngs].store(c_regs.after(k)[*rngs] + A_col[iterWaveM, yt] * B_row[iterWaveN, xt]).end(iterWaveM, iterWaveN, yt, xt)
# Close k, sync, and close K tiles
sink = sink.end(k).barrier().end(k_tile_range)
# ---------------------------
# REG -> GLOBAL (epilogue)
# ---------------------------
c = c.reshape(WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM,
WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN)
c = c[waveIdy, :, laneIdy, :,
waveIdx, :, laneIdx, :]
sink = copy(c, c_regs.after(sink), rng=600)
return sink.sink(arg=KernelInfo(opts_to_apply=())).simplify()
def test_matmul(sink:UOp, dtype=dtypes.float32, N=N):
rng = np.random.default_rng()
a = Tensor(rng.random((N, N), dtype=np.float32)-0.5, dtype=dtype)
b = Tensor(rng.random((N, N), dtype=np.float32)-0.5, dtype=dtype)
hc = Tensor.empty(N, N, dtype=dtype)
Tensor.realize(a, b, hc)
ei = ExecItem(sink, [t.uop.buffer for t in [hc, a, b]], prg=get_runner(Device.DEFAULT, sink))
ets = []
with Context(DEBUG=2):
for _ in range(run_count):
ets.append(ei.run(wait=True))
print(f"REAL TFLOPS {N * N * N * 2 / min(ets) * 1e-12:.2f}")
if getenv("VERIFY", 1):
GlobalCounters.reset()
with Context(DEBUG=2):
tc = (a @ b).realize()
with Context(DEBUG=0):
err = (hc - tc).square().mean().item()
print(f"mean squared error {err}")
if err > 1e-06:
raise RuntimeError("matmul is wrong!")
if __name__ == "__main__":
test_matmul(hand_spec_kernel3(), N=N)