Files
tinygrad/test/external/external_test_onnx_runner.py
2025-10-07 10:42:22 +08:00

138 lines
6.3 KiB
Python

import unittest, onnx, tempfile, pathlib
import numpy as np
from tinygrad import dtypes, Tensor
from tinygrad.uop.ops import Ops
from tinygrad.device import is_dtype_supported
from tinygrad.nn.onnx import OnnxRunner, OnnxDataType
from hypothesis import given, strategies as st
# copied from test_const_folding.py
def _check_ast_count(desired_count:int, t:Tensor):
# NOTE: this has side effect because everything can be scheduled only once
schedule = t.schedule()
asts = [s for s in schedule if s.ast.op is Ops.SINK]
assert len(asts) == desired_count, f"{len(asts)} != {desired_count}"
def build_onnx(nodes, from_disk:bool=True, **kwargs):
"""Helper to build and return an OnnxRunner from ONNX nodes."""
graph = onnx.helper.make_graph(nodes, 'test', kwargs.get('inputs', []), kwargs.get('outputs', []), kwargs.get('initializers', []))
model = onnx.helper.make_model(graph)
if from_disk:
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = pathlib.Path(tmpdir)
model_path = tmp_path / "model.onnx"
onnx.save(model, model_path)
runner = OnnxRunner(model_path)
else:
# use the in-memory method
runner = OnnxRunner(Tensor(model.SerializeToString(), device="PYTHON"))
return runner
class TestOnnxRunner(unittest.TestCase):
def _test_const_fold_unary_op(self, from_disk:bool):
runner = build_onnx(
nodes=[
onnx.helper.make_node('Expand', ['inp', 'shape'], ['expanded']),
onnx.helper.make_node('Exp', ['expanded'], ['output'])
],
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, (5,))],
initializers=[
onnx.helper.make_tensor('inp', onnx.TensorProto.FLOAT, (), [1.0]),
onnx.helper.make_tensor('shape', onnx.TensorProto.INT64, (1,), [5])
],
from_disk=from_disk)
output = runner({'inp': Tensor([1.0])})['output']
_check_ast_count(0, output)
def _test_const_fold_binary_op(self, from_disk:bool):
runner = build_onnx(
nodes=[onnx.helper.make_node('Add', ['inp', 'const'], ['output'])],
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, (4,))],
initializers=[
onnx.helper.make_tensor('inp', onnx.TensorProto.FLOAT, (4,), [1, 2, 3, 4]),
onnx.helper.make_tensor('const', onnx.TensorProto.FLOAT, (), [0])
],
from_disk=from_disk)
output = runner({'inp': Tensor([1, 2, 3, 4])})['output']
_check_ast_count(0, output)
def test_const_fold_from_disk(self):
self._test_const_fold_unary_op(True)
self._test_const_fold_binary_op(True)
def test_const_fold_from_memory(self):
self._test_const_fold_unary_op(False)
# TODO: understand this and fix this, bitcast related
# self._test_const_fold_binary_op(False)
def test_external_data_loading(self):
weights = np.arange(4, dtype=np.float32)
tensor_with_data = onnx.helper.make_tensor('weights', onnx.TensorProto.FLOAT, weights.shape, weights.tobytes(), raw=True)
graph = onnx.helper.make_graph(
nodes=[onnx.helper.make_node('Add', ['inp', 'weights'], ['output'])],
name='test_external',
inputs=[onnx.helper.make_tensor_value_info('inp', onnx.TensorProto.FLOAT, (1,))],
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, weights.shape)],
initializer=[tensor_with_data]
)
model = onnx.helper.make_model(graph)
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = pathlib.Path(tmpdir)
model_path = tmp_path / "model.onnx"
onnx.save_model(model, model_path, save_as_external_data=True, all_tensors_to_one_file=True, size_threshold=0, location="weights.onnx_data")
runner = OnnxRunner(model_path)
output = runner({'inp': Tensor([1])})['output']
np.testing.assert_equal(output.numpy(), weights + 1)
all_dtypes = list(OnnxDataType)
device_supported_dtypes = {odt for odt in OnnxDataType if is_dtype_supported(odt.to_dtype())}
class TestOnnxRunnerDtypes(unittest.TestCase):
"""
Internal tensors (initializers, attributes) fallback to default dtype if unsupported by device.
External tensors (inputs) preserve their original dtype - user must ensure compatibility with device.
"""
def _get_expected_dtype(self, onnx_dtype: int, is_input: bool):
true_dtype = OnnxDataType(onnx_dtype).to_dtype()
# inputs always preserve their true dtype.
if is_input:
return true_dtype
# supported types are always themselves.
if onnx_dtype in device_supported_dtypes:
return true_dtype
# otherwise it's an unsupported dtype that's internal to the ONNX model, which should fallback to default.
return dtypes.default_int if dtypes.is_int(true_dtype) else dtypes.default_float
@given(onnx_dtype=st.sampled_from(all_dtypes))
def test_input_dtype(self, onnx_dtype: int):
expected_dtype = self._get_expected_dtype(onnx_dtype, True)
runner = build_onnx(
nodes=[onnx.helper.make_node('Identity', ['input'], ['output'])],
inputs=[onnx.helper.make_tensor_value_info('input', onnx_dtype, ())],
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, ())],
from_disk=False)
self.assertEqual(runner.graph_inputs['input'].dtype, expected_dtype)
@given(onnx_dtype=st.sampled_from(all_dtypes))
def test_initializer_dtype(self, onnx_dtype: int):
expected_dtype = self._get_expected_dtype(onnx_dtype, False)
runner = build_onnx(
nodes=[onnx.helper.make_node('Identity', ['initializer'], ['output'])],
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, (2,))],
initializers=[onnx.helper.make_tensor('initializer', onnx_dtype, (2,), [1, 2])],
from_disk=False)
self.assertEqual(runner.graph_values['initializer'].dtype, expected_dtype)
@given(onnx_dtype=st.sampled_from(all_dtypes))
def test_node_attribute_dtype(self, onnx_dtype: int):
expected_dtype = self._get_expected_dtype(onnx_dtype, False)
value_tensor = onnx.helper.make_tensor('value', onnx_dtype, (2,), [1, 2])
runner = build_onnx(
nodes=[onnx.helper.make_node('Constant', [], ['output'], value=value_tensor)],
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, (2,))],
from_disk=False)
self.assertEqual(runner.graph_nodes[0].opts['value'].dtype, expected_dtype)
if __name__ == '__main__':
unittest.main()