Files
tinygrad/test/test_tensor_variable.py
2026-01-01 09:41:07 -05:00

142 lines
4.9 KiB
Python

import unittest
import numpy as np
from tinygrad import Tensor, Variable
class TestTensorVariable(unittest.TestCase):
def test_add_tvar(self):
vv = Variable("a", 0, 10).bind(1)
ret = (Tensor(vv) + 3).item()
assert ret == 4
def test_inner_tvar_node(self):
vv = Variable("w", 0, 10).bind(2)
ret = Tensor.from_uop(vv * 4).item()
assert ret == 8
def test_inner_tvar_mul(self):
vv = Variable("w", 0, 10).bind(2)
assert (Tensor(3) * vv).item() == 6
def test_inner_tvar_mul_node(self):
vv = Variable("w", 0, 10).bind(2)
assert (Tensor(3) * (vv * 4)).item() == 24
def test_symbolic_mean(self):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 10).contiguous()[:, :vv]
ret = t.mean().item()
assert ret == 1
def test_symbolic_mean_2d(self):
vv = Variable("a", 1, 10).bind(2)
vv2 = Variable("b", 1, 10).bind(2)
t = Tensor.ones(10, 10).contiguous()[:vv2, :vv]
ret = t.mean().item()
assert ret == 1
def test_symbolic_mean_2d_axis_1(self):
vv = Variable("a", 1, 10).bind(2)
vv2 = Variable("b", 1, 10).bind(2)
t = Tensor.ones(10, 10).contiguous()[:vv2, :vv]
ret = t.mean(axis=1)[:2].reshape(2, 1).numpy()
assert np.all(ret == 1)
def test_symbolic_mean_2d_add(self):
add_term = Variable("c", 0, 10).bind(1)
vv = Variable("a", 1, 10).bind(1)
vv2 = Variable("b", 1, 10).bind(1)
t = Tensor.ones(20, 20).contiguous()[:vv2+add_term, :vv+add_term]
ret = t.mean().item()
assert ret == 1
def test_symbolic_var(self):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 10).contiguous()[:, :vv]
ret = t.var().item()
assert ret == 0
def test_symbolic_pad(self):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous()
t = t.pad([vv, vv, vv, vv]).mean()
ones = 4
zeros = 6+6+4+4+6+6
self.assertAlmostEqual(t.item(), ones/(ones+zeros))
def test_symbolic_arange(self):
vv = Variable("a", 1, 10)
ret = Tensor.arange(0, vv.bind(4))
self.assertListEqual(ret[:4].tolist(), [0,1,2,3])
def test_symbolic_arange_sym_start(self):
vv = Variable("a", 1, 6)
ret = Tensor.arange(vv.bind(4), 7)
self.assertListEqual(ret[:3].tolist(), [4,5,6])
def test_symbolic_arange_sym_step(self):
vv = Variable("step", 1, 3)
ret = Tensor.arange(0, 10, vv.bind(2))
self.assertListEqual(ret[:5].tolist(), [0,2,4,6,8])
def test_symbolic_arange_two_vars(self):
begin = Variable("b", 1, 5)
end = Variable("e", 6, 10)
ret = Tensor.arange(begin.bind(4), end.bind(7))
self.assertListEqual(ret[:3].tolist(), [4,5,6])
def test_symbolic_arange_three_vars(self):
begin = Variable("b", 0, 5)
end = Variable("e", 10, 20)
step = Variable("s", 1, 3)
ret = Tensor.arange(begin.bind(2), end.bind(14), step.bind(3))
self.assertListEqual(ret[:4].tolist(), [2,5,8,11])
def test_symbolic_full(self):
vv = Variable("x", 1, 10).bind(5)
t = Tensor.full((3,), vv)
self.assertListEqual(t.tolist(), [5,5,5])
def test_variable_empty(self):
v = Variable("i", 1, 10)
# TODO: Tensor creation from unbound variable should assert
# with self.assertRaises(AssertionError): t = Tensor.empty(3, v)
vb = v.bind(3)
t = Tensor.empty(3, vb)
assert t.uop.base.buffer.size == 30
assert t.uop.shape == (3, vb)
def test_symbolic_chunk(self):
# chunk should work when split dimension is concrete, even if other dims are symbolic
vv = Variable("a", 1, 10).bind(4)
t = Tensor.ones(10, 8).contiguous()[:vv, :] # shape (vv, 8)
chunks = t.chunk(2, dim=-1) # split along concrete dim 8
assert len(chunks) == 2
assert chunks[0].shape[1] == 4
assert chunks[1].shape[1] == 4
# verify the values by shrinking to concrete shape first
np.testing.assert_equal(chunks[0].shrink(((0, 4), (0, 4))).numpy(), np.ones((4, 4)))
np.testing.assert_equal(chunks[1].shrink(((0, 4), (0, 4))).numpy(), np.ones((4, 4)))
def test_symbolic_split(self):
# split should work when split dimension is concrete, even if other dims are symbolic
vv = Variable("a", 1, 10).bind(3)
t = Tensor.arange(30).reshape(10, 3).contiguous()[:, :vv] # shape (10, vv)
splits = t.split(5, dim=0) # split along concrete dim 10
assert len(splits) == 2
assert splits[0].shape[0] == 5
assert splits[1].shape[0] == 5
# verify the values by shrinking to concrete shape first
np.testing.assert_equal(splits[0].shrink(((0, 5), (0, 3))).numpy(), np.arange(30).reshape(10, 3)[:5, :3])
np.testing.assert_equal(splits[1].shrink(((0, 5), (0, 3))).numpy(), np.arange(30).reshape(10, 3)[5:, :3])
def test_symbolic_chunk_error_on_symbolic_dim(self):
# chunk should fail when trying to split along a symbolic dimension
vv = Variable("a", 1, 10).bind(4)
t = Tensor.ones(10, 8).contiguous()[:vv, :] # shape (vv, 8)
with self.assertRaises(AssertionError):
t.chunk(2, dim=0) # can't split along symbolic dim
if __name__ == '__main__':
unittest.main()