mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-20 04:18:13 -05:00
* ** rangeify, try 3 * bring that over * bufferize, don't use contig tag * work * ish * fix rangeify * flash attention is back * fix rangeify tests * stuff passes * fix test_log_softmax * more stuff passes * progress children * new endrange solution * progress * progress counter * basic assign * contigs only * symbolic in schedule * unbind_kernel * late children * ops fixed * beautiful mnist is close * that seems to work * mnist works * improve names * fix bmnist * no pcontig * testing backward * work * clone movement ops * new_range helper * MBLOCK/MERGE * ops tests pass * revert mblock stuff * cleanups...but it breaks ops * remove reindex * hack for relu * disable the hacks * more hacks * upd * mostly works with cleanups disabled * ndr * ops tests pass * terrible hacks for indexing to work * context mismatch * pcontig * split pcontig v contig * z3 trunc * null * no fuse in rangeify * ops test passes * lnorm * fix assign * nd rangeify * both should work * tests for rangeify * cleanups * stores pass the pointer through * disable pcontig for now * PARTIAL_CONTIG is a flag
110 lines
3.0 KiB
Python
110 lines
3.0 KiB
Python
import unittest
|
|
from tinygrad import Tensor
|
|
from tinygrad.helpers import RANGEIFY
|
|
|
|
N = 256
|
|
|
|
@unittest.skipIf(RANGEIFY<1, "tests only for RANGEIFY")
|
|
class TestRangeify(unittest.TestCase):
|
|
def test_expand_children(self):
|
|
A = Tensor.empty(N, N).sum(axis=1)
|
|
ba = A.expand(N, N)
|
|
((ba+1).sum(axis=1) + (ba+2).sum(axis=0)).realize()
|
|
|
|
def test_double_gemm(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
(A@B@C).realize()
|
|
|
|
def test_double_gemm_exp(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
(((A@B).exp()@C).exp()).realize()
|
|
|
|
def test_double_gemm_relu(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
(((A@B).relu()@C).relu()).realize()
|
|
|
|
def test_double_gemm_relu_half_contig(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
(((A@B).relu().contiguous(arg=(1,))@C).relu()).realize()
|
|
|
|
def test_double_gemm_half_contig(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
((A@B).contiguous(arg=(1,))@C).realize()
|
|
|
|
def test_double_gemm_contig(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
((A@B).contiguous()@C).realize()
|
|
|
|
def test_many_gemm(self):
|
|
A = Tensor.empty(N, N)
|
|
B = Tensor.empty(N, N)
|
|
C = Tensor.empty(N, N)
|
|
D = Tensor.empty(N, N)
|
|
E = Tensor.empty(N, N)
|
|
F = Tensor.empty(N, N)
|
|
(A@B@C@D@E@F).realize()
|
|
|
|
def test_conv2d(self):
|
|
x = Tensor.empty(1, 4, 32, 32)
|
|
w1 = Tensor.empty(8, 4, 3, 3)
|
|
x.conv2d(w1).realize()
|
|
|
|
def test_conv2d_t(self):
|
|
x = Tensor.empty(1, 4, 32, 32)
|
|
w1 = Tensor.empty(8, 4, 3, 3)
|
|
(x*2).conv2d(w1).realize()
|
|
|
|
def test_double_conv2d(self):
|
|
x = Tensor.empty(1, 4, 32, 32)
|
|
w1 = Tensor.empty(8, 4, 3, 3)
|
|
w2 = Tensor.empty(12, 8, 3, 3)
|
|
x.conv2d(w1).conv2d(w2).realize()
|
|
|
|
def test_double_conv2d_half_contig(self):
|
|
x = Tensor.empty(1, 4, 32, 32)
|
|
w1 = Tensor.empty(8, 4, 3, 3)
|
|
w2 = Tensor.empty(12, 8, 3, 3)
|
|
# NOTE: this contiguous doesn't help
|
|
x.conv2d(w1).contiguous(arg=(1,)).conv2d(w2).permute(0,2,3,1).contiguous().realize()
|
|
|
|
def test_double_conv2d_contig(self):
|
|
x = Tensor.empty(1, 4, 32, 32)
|
|
w1 = Tensor.empty(8, 4, 3, 3)
|
|
w2 = Tensor.empty(12, 8, 3, 3)
|
|
x.conv2d(w1).contiguous().conv2d(w2).realize()
|
|
|
|
def test_transformer_ffn(self):
|
|
from tinygrad.apps.llm import TransformerBlock
|
|
from tinygrad import nn
|
|
blk = TransformerBlock(1024, 4096, 1, 1, 1e-5)
|
|
for p in nn.state.get_parameters(blk): p.replace(Tensor.empty(p.shape))
|
|
|
|
x = Tensor.empty(128, 1024)
|
|
out = blk._feed_forward(x)
|
|
out.realize()
|
|
|
|
def test_flash_attention(self):
|
|
BS = 4
|
|
HEADS = 2
|
|
MATDIM = 16
|
|
EMB = 8
|
|
q = Tensor.empty(BS, HEADS, MATDIM, EMB)
|
|
k = Tensor.empty(BS, HEADS, MATDIM, EMB)
|
|
v = Tensor.empty(BS, HEADS, MATDIM, EMB)
|
|
q.scaled_dot_product_attention(k, v).realize()
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|