Files
tinygrad/extra/kernel_search.py
George Hotz d93563f39f fix KOPT
2023-02-07 06:56:33 -06:00

269 lines
16 KiB
Python

#!/usr/bin/env python
import random, traceback
import time
import itertools
from enum import Enum
import numpy as np
from tinygrad.ops import LazyOp, ReduceOps, BinaryOps, UnaryOps, MovementOps
from tinygrad.shape import ShapeTracker, View, ZeroView
from tinygrad.llops.ops_gpu import GPUBuffer, CLASTKernel, CL
from tinygrad.runtime.opencl import OSX_TIMING_RATIO
from tinygrad.ops import DEBUG
from tinygrad.helpers import getenv
from extra.lib_test_ast import test_ast
import pickle, dbm
intervention_cache = dbm.open('/tmp/kopt.db', 'c')
Interventions = Enum("Interventions", ["SWAP", "UPCAST", "SHIFT", "REDUCE"])
def get_interventions(k):
k.process()
p1, p2, p3, p4, p5 = [], [], [], [], []
p1 = [(Interventions.SWAP, x) for x in itertools.combinations(range(k.first_reduce), 2)]
p2 = [(Interventions.SWAP, x) for x in itertools.combinations(range(k.first_reduce, k.shape_len), 2)]
p3 = [(Interventions.UPCAST, None)] if max(st.shape[-1] for st in k.sts) < 32 else []
for up_axis in range(k.shape_len):
max_up = max(st.shape[up_axis] for st in k.sts)
if max_up == 1: continue
for amount in sorted(list(set([2,4,8,max_up]))):
if amount >= 32: continue
if not all(st.shape[up_axis] == 1 or st.shape[up_axis]%amount == 0 for st in k.sts): continue
p3.append((Interventions.UPCAST, (up_axis, amount)))
"""
for up_axis in range(1,k.first_reduce):
for amount in [4,8,16,32]:
if k.sts[0].shape[up_axis] % amount == 0:
p4.append((Interventions.SHIFT, (up_axis, amount, True)))
p4.append((Interventions.SHIFT, (up_axis, amount, False)))
"""
#max_up = max(st.shape[k.first_reduce] for st in k.sts)
#p5 = [(Interventions.REDUCE, (max_up,))]
return p1+p2+p3+p4+p5
def apply_intervention(k, typ, dat):
k.process()
if typ == Interventions.SWAP:
# swap axes
a1, a2 = dat
new_order = list(range(0, k.shape_len))
new_order[a1], new_order[a2] = new_order[a2], new_order[a1]
k.reshape_and_permute(None, new_order)
elif typ == Interventions.UPCAST:
if dat is not None:
# upcast
up_axis, amount = dat[0], dat[1]
# no change, we added a dimension
k.reshape_and_permute(
lambda x: list(x[0:up_axis]) + ([x[up_axis]//amount, amount] if x[up_axis] > 1 else [1,1]) + list(x[up_axis+1:]),
[i for i in range(k.shape_len+1) if i != up_axis+1] + [up_axis+1])
# drop the last dimension
k.upcast(allow_float4=False)
elif typ == Interventions.SHIFT:
up_axis, amount, flip = dat[0], dat[1], dat[2]
k.reshape_and_permute(
lambda x: list(x[0:up_axis]) + (([amount, x[up_axis]//amount] if flip else [x[up_axis]//amount, amount]) if x[up_axis] > 1 else [1,1]) + list(x[up_axis+1:]),
[up_axis] + [i for i in range(k.shape_len+1) if i != up_axis])
elif typ == Interventions.REDUCE:
k.group_for_reduce.append(dat[0])
k.simplify_ones()
k.simplify_merge_adjacent()
def run_and_time(k):
prog = k.codegen()
ret = []
for i in range(3):
t1 = time.monotonic_ns()
e = prog(*k.bufs)
e.wait()
t4 = time.monotonic_ns()
t2, t3 = e.profile.start * OSX_TIMING_RATIO, e.profile.end * OSX_TIMING_RATIO
#print(*[f"{(x-t1)*1e-3:7.2f} us" for x in [t1, t2, t3, t4]]) # TODO: this may be wrong on non OS X
#assert t1 < t2 < t3 < t4, "timings not in order"
#ret.append(t3-t2)
ret.append(t4-t1)
return min(ret)
def search_one(ast, winning_interventions=[], debug=False):
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
ints = get_interventions(k)
options = [(run_and_time(k), None, 0.9)]
name = k.fxn.name
if debug: print(f"{options[-1][1]} : {options[-1][0]*1e-3:.2f}")
for int in ints:
try:
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
apply_intervention(k, *int)
options.append((run_and_time(k), int, 1.0))
#test_ast(k)
if debug: print(f"{options[-1][1]} : {options[-1][0]*1e-3:.2f}")
except Exception:
if debug: print(int, "FAILED")
pass
baseline = options[0]
options = sorted(options, key=lambda x: x[0]*x[2])
best = options[0]
print(f"{name:30s} {baseline[0]/1e3:9.2f} us -> {best[0]/1e3:9.2f} us {baseline[0]/best[0]:7.2f}x *with* {winning_interventions} + {best[1]}")
return best
def apply_optimization(k, ast, max_interventions=1, cache=True):
from extra.kernel_search import search_one, apply_intervention
if k.key not in intervention_cache or cache == False:
winning_interventions = []
for i in range(max_interventions): # NOTE: multiple interventions is breaking the ASTs
oo = search_one(ast, winning_interventions)
if oo[1] is None: break
winning_interventions.append(oo[1])
intervention_cache[k.key] = pickle.dumps(winning_interventions)
ic = pickle.loads(intervention_cache[k.key])
if DEBUG >= 3: print("intervention", ic)
for w in ic: apply_intervention(k, *w)
def randomize_buffers(ast):
# before testing, we need to fill the buffers with randomness
bufs = get_buffers(ast)
for b in bufs:
randomness = np.random.default_rng().standard_normal(size=b._base_shape, dtype=np.float32)
if b._buf is not None: b._buf.copyin(randomness)
def search(ast):
randomize_buffers(ast)
k = CLASTKernel(ast)
best_time = baseline = run_and_time(k)
winning_interventions = []
for i in range(10):
print(winning_interventions)
oo = search_one(ast, winning_interventions, True)
print(oo)
if oo[1] is None: break
winning_interventions.append(oo[1])
best_time = oo[0]
# run best
print(f"winning interventions {winning_interventions}")
for i in range(3):
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
k.codegen()(*k.bufs)
#k.print()
test_ast(k)
print(f"improved from {baseline/1e6:.2f} ms to {best_time/1e6:.2f} ms, a {baseline/best_time:.2f}x speedup @ {k.info.flops/best_time:.2f} GFLOPS")
from tinygrad.ops import get_buffers
def test_correctness(ast):
randomize_buffers(ast)
from extra.lib_test_ast import test_ast
k = CLASTKernel(ast)
ints = get_interventions(k)
k.codegen()(*k.bufs)
test_ast(k)
print("correct at baseline")
for int in ints:
print("***** APPLYING INTERVENTION", int)
k = CLASTKernel(ast)
k.printbufs("old:")
apply_intervention(k, *int)
k.printbufs("new:")
k.codegen()(*k.bufs)
print("***** TESTING INTERVENTION", int)
test_ast(k)
if __name__ == "__main__":
if getenv("OP", 0) == 1:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 3, 3, 3, 4), views=[View((1, 130, 258, 1, 12), (393216, 3072, 12, 12, 1), -3084), ZeroView((1, 128, 256, 1, 12), ((0, 1), (-1, 129), (-1, 257), (0, 1), (0, 12))), View((1, 64, 128, 8, 4, 3, 3, 3, 4), (0, 6192, 24, 0, 0, 3096, 12, 4, 1), 0)]), hostbuf=GPUBuffer(shape=(128, 768, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 3, 3, 3, 4), views=[View((1, 64, 128, 8, 4, 3, 3, 3, 4), (0, 0, 0, 432, 4, 144, 16, 48, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 108, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 8, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(32,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
op3 = LazyOp(UnaryOps.RELU, (op2,), None)
buf3 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
buf4 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
op4 = LazyOp(UnaryOps.EXP, (op2,), None)
op5 = LazyOp(BinaryOps.SUB, (buf4,op4,), None)
op6 = LazyOp(UnaryOps.RELU, (op5,), None)
op7 = LazyOp(BinaryOps.MUL, (buf3,op6,), None)
op8 = LazyOp(BinaryOps.SUB, (op3,op7,), None)
ast = LazyOp(MovementOps.RESHAPE, (op8,), (64, 1024, 4))
elif getenv("OP", 0) == 2:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 3, 3), views=[View((1, 66, 130, 32, 1), (262144, 4096, 32, 1, 1), -4128), ZeroView((1, 64, 128, 32, 1), ((0, 1), (-1, 65), (-1, 129), (0, 32), (0, 1))), View((1, 64, 128, 8, 4, 1, 1, 3, 3), (266240, 4160, 32, 4, 1, 12480, 12480, 4160, 32), 0)]), hostbuf=GPUBuffer(shape=(64, 1024, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 3, 3), views=[View((1, 64, 128, 8, 4, 1, 1, 3, 3), (0, 0, 0, 36, 1, 0, 0, 12, 4), 0)]), hostbuf=GPUBuffer(shape=(8, 9, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 8, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(32,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
op3 = LazyOp(UnaryOps.RELU, (op2,), None)
buf3 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
buf4 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
op4 = LazyOp(UnaryOps.EXP, (op2,), None)
op5 = LazyOp(BinaryOps.SUB, (buf4,op4,), None)
op6 = LazyOp(UnaryOps.RELU, (op5,), None)
op7 = LazyOp(BinaryOps.MUL, (buf3,op6,), None)
op8 = LazyOp(BinaryOps.SUB, (op3,op7,), None)
ast = LazyOp(MovementOps.RESHAPE, (op8,), (64, 1024, 4))
elif getenv("OP", 0) == 3:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 8, 4), views=[View((1, 64, 128, 4, 4, 1, 1, 8, 4), (0, 4096, 32, 0, 0, 0, 0, 4, 1), 0)]), hostbuf=GPUBuffer(shape=(64, 1024, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 8, 4), views=[View((1, 64, 128, 4, 4, 1, 1, 8, 4), (0, 0, 0, 128, 4, 0, 0, 16, 1), 0)]), hostbuf=GPUBuffer(shape=(4, 32, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 4, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 4, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(16,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
ast = LazyOp(MovementOps.RESHAPE, (op2,), (64, 512, 4))
elif getenv("REDUCE", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(32, 8, 112, 112), views=[View((32, 8, 112, 112), (12544, 401408, 112, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 32, 112, 112), force_create=True))
op0 = LazyOp(ReduceOps.SUM, (buf0,), (32, 1, 1, 1))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 1, 1), views=[View((32, 1, 1, 1), (0, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([9.964923e-06], dtype=np.float32)))
op1 = LazyOp(BinaryOps.MUL, (op0,buf1,), None)
ast = LazyOp(MovementOps.RESHAPE, (op1,), (1, 32, 1, 1))
elif getenv("CONVW", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 128, 3, 3, 512, 32, 32), views=[View((64, 512, 34, 34), (1024, 65536, 32, 1), -33), ZeroView((64, 512, 32, 32), ((0, 64), (0, 512), (-1, 33), (-1, 33))), View((64, 1, 128, 3, 3, 512, 32, 32), (591872, 591872, 0, 34, 1, 1156, 34, 1), 0)]), hostbuf=GPUBuffer(shape=(512, 64, 32, 32), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 128, 3, 3, 512, 32, 32), views=[View((64, 1, 128, 3, 3, 512, 32, 32), (0, 0, 1024, 0, 0, 131072, 32, 1), 0)]), hostbuf=GPUBuffer(shape=(512, 128, 32, 32), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (64, 1, 128, 3, 3, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (64, 128, 3, 3))
elif getenv("BC", 0):
# big conv
buf0 = GPUBuffer(shape=ShapeTracker(shape=(8, 1, 32, 112, 112, 3, 3, 3), views=[View((8, 3, 225, 225), (150528, 50176, 224, 1), 0), ZeroView((8, 3, 224, 224), ((0, 8), (0, 3), (0, 225), (0, 225))), View((8, 1, 32, 112, 112, 3, 3, 3), (151875, 151875, 0, 450, 2, 50625, 225, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 3, 224, 224), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(8, 1, 32, 112, 112, 3, 3, 3), views=[View((8, 1, 32, 112, 112, 3, 3, 3), (0, 0, 27, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 3, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (8, 1, 32, 112, 112, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (8, 32, 112, 112))
elif getenv("GEMM", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 1, 512, 512, 1, 1, 1, 512), views=[View((1, 512, 512, 1), (0, 1, 512, 0), 0), View((1, 1, 512, 512, 1, 1, 1, 512), (0, 0, 0, 1, 0, 0, 0, 512), 0)]), hostbuf=GPUBuffer(shape=(512, 512), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 1, 512, 512, 1, 1, 1, 512), views=[View((1, 1, 512, 512, 1, 1, 1, 512), (0, 0, 1, 0, 0, 0, 0, 512), 0)]), hostbuf=GPUBuffer(shape=(512, 512), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 1, 512, 512, 1, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (512, 512))
elif getenv("FASTCONV", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 32, 32, 32, 64, 3, 3), views=[View((32, 1, 32, 32, 32, 64, 3, 3), (73984, 73984, 0, 34, 1, 1156, 34, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 64, 34, 34), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 32, 32, 32, 64, 3, 3), views=[View((32, 1, 32, 32, 32, 64, 3, 3), (0, 0, 576, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 64, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (32, 1, 32, 32, 32, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (32, 32, 32, 32))
elif getenv("BROKEN", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 1, 1), views=[View((64, 1, 1, 1), (1, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(64,), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(64, 5, 32, 32), views=[View((64, 5, 32, 32), (5120, 1024, 32, 1), 0)]), hostbuf=GPUBuffer(shape=(64, 5, 32, 32), force_create=True))
op0 = LazyOp(ReduceOps.SUM, (buf1,), (64, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 1, 1), views=[View((64, 1, 1, 1), (0, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([0.001], dtype=np.float32)))
op1 = LazyOp(BinaryOps.MUL, (op0,buf2,), None)
op2 = LazyOp(BinaryOps.SUB, (buf0,op1,), None)
ast = LazyOp(MovementOps.RESHAPE, (op2,), (64,))
elif int(os.getenv("BROKEN3", "0")):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(5, 1, 128, 16, 16, 128, 3, 3), views=[View((5, 128, 18, 18), (32768, 256, 16, 1), -17), ZeroView((5, 128, 16, 16), ((0, 5), (0, 128), (-1, 17), (-1, 17))), View((5, 1, 128, 16, 16, 128, 3, 3), (41472, 41472, 0, 18, 1, 324, 18, 1), 0)]), hostbuf=GPUBuffer(shape=(5, 128, 16, 16), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(5, 1, 128, 16, 16, 128, 3, 3), views=[View((5, 1, 128, 16, 16, 128, 3, 3), (0, 0, 1152, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(128, 128, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (5, 1, 128, 16, 16, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (5, 128, 16, 16))
else:
# reduce
buf0 = GPUBuffer(shape=ShapeTracker(shape=(3, 1, 32, 3, 3, 32, 112, 112), views=[View((3, 32, 225, 225), (50176, 150528, 224, 1), 0), ZeroView((3, 32, 224, 224), ((0, 3), (0, 32), (0, 225), (0, 225))), View((3, 1, 32, 3, 3, 32, 112, 112), (1620000, 1620000, 0, 225, 1, 50625, 450, 2), 0)]), hostbuf=GPUBuffer(shape=(32, 3, 224, 224), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(3, 1, 32, 3, 3, 32, 112, 112), views=[View((3, 1, 32, 3, 3, 32, 112, 112), (0, 12845056, 401408, 0, 0, 12544, 112, 1), 0)]), hostbuf=GPUBuffer(shape=(1, 1, 32, 1, 1, 32, 112, 112), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (3, 1, 32, 3, 3, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (3, 32, 3, 3))
search(ast)
#test_correctness(ast)