Files
tinygrad/test/external/fuzz_linearizer.py
2023-12-07 16:32:30 -08:00

102 lines
3.1 KiB
Python

import random, traceback
import numpy as np
from collections import Counter
from extra.optimization.helpers import load_worlds, ast_str_to_lin
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.features.search import get_linearizer_actions, bufs_from_lin, tuplize_uops
from tinygrad.graph import print_tree
from tinygrad.helpers import getenv
from tinygrad.device import Device, Compiled, Interpreted
from tinygrad.ops import vars_from_ast
device = Device[Device.DEFAULT]
def run_linearizer(lin: Linearizer, rawbufs=None, var_vals=None):
if rawbufs is None: rawbufs = bufs_from_lin(lin)
if var_vals is None: var_vals = {v: v.min for v in vars_from_ast(lin.ast)}
# TODO: images needs required_optimization
try:
if isinstance(device, Compiled):
prg = device.to_program(lin)
else:
prg = device.get_runner(lin.ast)
except Exception:
print(lin.ast)
traceback.print_exc()
print("COMPILE FAILED!!")
return "COMPILE_ERROR"
try:
prg.exec(rawbufs, var_vals)
except Exception:
print(lin.ast)
traceback.print_exc()
print("EXEC FAILED!!")
return "EXEC_ERROR"
return "PASS"
def fuzz_linearizer(lin: Linearizer):
random.seed(42)
np.random.seed(42)
print_tree(lin.ast)
print(lin.colored_shape())
rawbufs = bufs_from_lin(lin)
seen_uops = {}
ground_truth = None
while 1:
if len(seen_uops) >= 20: break # enough for this kernel
actions = get_linearizer_actions(lin, include_0=False)
if not actions: break
lin = random.choice(list(actions.values()))
if lin.applied_opts: print(f"applied action: {lin.applied_opts[-1]}")
# stop if kernel uops repeat
tuops = tuplize_uops(lin.linearize().uops)
if tuops in seen_uops: break
seen_uops[tuops] = tuple(lin.applied_opts)
print(lin.colored_shape())
# get a new output buffer
rawbufs[0] = type(rawbufs[0])(Device.DEFAULT, rawbufs[0].size, rawbufs[0].dtype)
var_vals = {v: random.randint(v.min, v.max) for v in vars_from_ast(lin.ast)}
if (msg := run_linearizer(lin, rawbufs, var_vals)) != "PASS":
print(f"{lin.applied_opts=}")
return msg
result = rawbufs[0].toCPU()
if ground_truth is None:
ground_truth = result
else:
try:
np.testing.assert_allclose(result, ground_truth, rtol=1e-2, atol=1e-2)
except AssertionError:
print(lin.ast)
traceback.print_exc()
print(f"{lin.applied_opts=}")
return "NOT_ALLCLOSE"
return "PASS"
if __name__ == "__main__":
ast_strs = load_worlds()
print(f"{len(ast_strs)=}")
tested = 0
c = Counter()
failed = []
for i, ast in enumerate(ast_strs[:getenv("FUZZ_N", len(ast_strs))]):
if "Variable" in ast and isinstance(device, Interpreted): continue # no symbolic shape for Interpreted
if "dtypes.image" in ast and Device.DEFAULT != "GPU": continue # IMAGE is only for GPU
print(f"testing ast {i}")
tested += 1
lin = ast_str_to_lin(ast)
fuzz = str(fuzz_linearizer(lin))
c[fuzz] += 1
if fuzz != "PASS":
failed.append(i)
print(f"{tested=}")
print(c.most_common())
print(f"{failed=}")