Files
tinygrad/test/external/fuzz_linearizer.py
nimlgen f87ecbb0f3 fuzzer validates outputs + (partially) oob accesses (#3178)
* fuzzer validates outputs + (partially) oob accesses

* +random

* oob check only for compiled

* type cmp fixes

* fix zeroing

* no prints

* add seed
2024-01-19 13:34:51 -05:00

128 lines
4.1 KiB
Python

import random, traceback, ctypes
from typing import List, Tuple
import numpy as np
from collections import Counter
from extra.optimization.helpers import load_worlds, ast_str_to_lin
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.features.search import get_linearizer_actions, bufs_from_lin
from tinygrad.tensor import Tensor
from tinygrad.graph import print_tree
from tinygrad.helpers import getenv, from_mv, Context
from tinygrad.device import Device, Compiled, Interpreted
from tinygrad.codegen.linearizer import UOp
def tuplize_uops(uops:List[UOp]) -> Tuple: return tuple([(x.uop, x.dtype, tuple(uops.index(x) for x in x.vin), x.arg) for x in uops])
device = Device[Device.DEFAULT]
def get_fuzz_rawbufs(lin):
rawbufs = bufs_from_lin(lin)
# Reallocate output buffer with additional area to detect out-of-bounds writes.
RED_AREA_SIZE = 1024 if isinstance(device, Compiled) else 0
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True, size=rawbufs[0].size+RED_AREA_SIZE)
with Context(DEBUG=0):
for rawbuf in rawbufs[1:]:
t = Tensor.uniform((rawbuf.size,), dtype=rawbuf.dtype)
rawbuf.copyin(t.realize().lazydata.realized.as_buffer())
return rawbufs
def get_fuzz_rawbuf_like(rawbuf, zero=False, size=None):
rawbuf = type(rawbuf)(Device.DEFAULT, rawbuf.size if size is None else size, rawbuf.dtype)
if zero:
with Context(DEBUG=0):
mv = memoryview(bytearray(rawbuf.size * rawbuf.dtype.itemsize))
ctypes.memset(from_mv(mv), 0, len(mv))
rawbuf.copyin(mv)
return rawbuf
def run_linearizer(lin: Linearizer, rawbufs=None, var_vals=None):
if rawbufs is None: rawbufs = bufs_from_lin(lin)
if var_vals is None: var_vals = {v: v.min for v in lin.ast.vars()}
# TODO: images needs required_optimization
try:
if isinstance(device, Compiled):
prg = device.to_program(lin)
else:
prg = device.get_runner(lin.ast)
except Exception:
print(lin.ast)
traceback.print_exc()
print("COMPILE FAILED!!")
return "COMPILE_ERROR"
try:
prg.exec(rawbufs, var_vals)
except Exception:
print(lin.ast)
traceback.print_exc()
print("EXEC FAILED!!")
return "EXEC_ERROR"
return "PASS"
def fuzz_linearizer(lin: Linearizer):
random.seed(42)
np.random.seed(42)
print_tree(lin.ast)
print(lin.colored_shape())
rawbufs = get_fuzz_rawbufs(lin)
seen_uops = {}
ground_truth = None
while 1:
if len(seen_uops) >= 10: break # enough for this kernel
actions = get_linearizer_actions(lin, include_0=False)
if not actions: break
lin = random.choice(list(actions.values()))
if lin.applied_opts: print(f"applied action: {lin.applied_opts[-1]}")
# stop if kernel uops repeat
tuops = tuplize_uops(lin.linearize().uops)
if tuops in seen_uops: break
seen_uops[tuops] = tuple(lin.applied_opts)
print(lin.colored_shape())
# get a new output buffer
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True)
var_vals = {v: random.randint(v.min, v.max) for v in lin.ast.vars()}
if (msg := run_linearizer(lin, rawbufs, var_vals)) != "PASS":
print(f"{lin.applied_opts=}")
return msg
result = np.frombuffer(rawbufs[0].as_buffer(), rawbufs[0].dtype.np)
if ground_truth is None:
ground_truth = result
else:
try:
# compare memoryviews directly
np.testing.assert_allclose(result, ground_truth, rtol=1e-2, atol=1e-2)
except AssertionError:
print(lin.ast)
traceback.print_exc()
print(f"{lin.applied_opts=}")
return "NOT_ALLCLOSE"
return "PASS"
if __name__ == "__main__":
ast_strs = load_worlds()
print(f"{len(ast_strs)=}")
tested = 0
c = Counter()
failed = []
for i, ast in enumerate(ast_strs[:getenv("FUZZ_N", len(ast_strs))]):
if "Variable" in ast and isinstance(device, Interpreted): continue # no symbolic shape for Interpreted
if "dtypes.image" in ast and Device.DEFAULT != "GPU": continue # IMAGE is only for GPU
print(f"testing ast {i}")
tested += 1
lin = ast_str_to_lin(ast)
fuzz = str(fuzz_linearizer(lin))
c[fuzz] += 1
if fuzz != "PASS":
failed.append(i)
print(f"{tested=}")
print(c.most_common())
print(f"{failed=}")