Files
tinygrad/tinygrad/tensor.py
2021-11-28 23:28:37 -05:00

338 lines
11 KiB
Python

# inspired by https://github.com/karpathy/micrograd/blob/master/micrograd/engine.py
import inspect
import functools
import os
from collections import defaultdict
import numpy as np
# **** profiler ****
DEBUG = os.getenv("DEBUG", None) is not None
if DEBUG:
import atexit, time
debug_counts, debug_times = defaultdict(int), defaultdict(float)
def print_debug_exit():
for name, _ in sorted(debug_times.items(), key=lambda x: -x[1]):
print(f"{name:>20} : {debug_counts[name]:>6} {debug_times[name]:>10.2f} ms")
atexit.register(print_debug_exit)
class ProfileOp:
def __init__(self, name, x, backward=False):
self.name, self.x, self.output = f"back_{name}" if backward else name, x, None
def __enter__(self):
if DEBUG: self.st = time.time()
return self
def __exit__(self, *junk):
if DEBUG:
# TODO: fix this
#if cl_queue is not None:
# cl_queue.finish()
et = (time.time()-self.st)*1000.
debug_counts[self.name] += 1
debug_times[self.name] += et
print(f"{self.name:>20} : {et:>7.2f} ms {str([y.shape for y in self.x]):>40} {'-> '+str(self.output.shape) if self.output is not None else ''}")
# **** enumerate supported devices ****
class Device:
_ops = sorted(os.listdir(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ops")))
imports = dict(enumerate([os.path.splitext(x)[0] for x in _ops if x.startswith("ops_")]))
DEFAULT = None
buffers = {}
for i,op in imports.items():
name = op[len("ops_"):].upper()
vars()[name] = i
DEFAULT = i if os.environ.get(name, 0) == "1" else DEFAULT
DEFAULT = CPU if DEFAULT is None else DEFAULT
# **** start with two base classes, Tensor and Function ****
class Tensor:
did_float_warning = False
training = True
ops = defaultdict(dict)
def __init__(self, data, device=Device.DEFAULT, requires_grad=True):
self.device, self.data = device, self._move_data(data, device)
self.grad, self.requires_grad = None, requires_grad
# internal variables used for autograd graph construction
self._ctx = None
def __repr__(self):
return f"<Tensor {self.data!r} with grad {(self.grad.data if self.grad else None)!r}>"
def assign(self, x):
self.data = x.data
@property
def shape(self):
return self.data.shape
@staticmethod
def _get_data_dtype(data):
return data.getdtype() if getattr(data, 'getdtype', None) else data.dtype
@property
def dtype(self):
return Tensor._get_data_dtype(self.data)
# ***** creation helper functions *****
@classmethod
def zeros(cls, *shape, **kwargs):
return cls(np.zeros(shape, dtype=np.float32), **kwargs)
@classmethod
def ones(cls, *shape, **kwargs):
return cls(np.ones(shape, dtype=np.float32), **kwargs)
@classmethod
def randn(cls, *shape, **kwargs):
return cls(np.random.randn(*shape).astype(np.float32), **kwargs)
@classmethod
def arange(cls, stop, start=0, **kwargs):
return cls(np.arange(start=start, stop=stop).astype(np.float32), **kwargs)
@classmethod
def uniform(cls, *shape, **kwargs):
return cls((np.random.uniform(-1., 1., size=shape)/np.sqrt(np.prod(shape))).astype(np.float32), **kwargs)
@classmethod
def eye(cls, dim, **kwargs):
return cls(np.eye(dim).astype(np.float32), **kwargs)
# ***** toposort and backward pass *****
def deepwalk(self):
def _deepwalk(node, visited, nodes):
visited.add(node)
if node._ctx:
[_deepwalk(i, visited, nodes) for i in node._ctx.parents if i not in visited]
nodes.append(node)
return nodes
return _deepwalk(self, set(), [])
def backward(self):
assert self.shape == (1,)
# fill in the first grad with one
# this is "implicit gradient creation"
self.grad = Tensor(np.ones(self.shape, dtype=self.dtype), device=self.device, requires_grad=False)
for t0 in reversed(self.deepwalk()):
assert (t0.grad is not None)
with ProfileOp(t0._ctx.__class__.__name__, [t0.grad], backward=True) as po:
grads = t0._ctx.backward(t0._ctx, t0.grad.data)
if len(t0._ctx.parents) == 1:
grads = [grads]
for t, g in zip(t0._ctx.parents, grads):
if g is not None:
assert g.shape == t.shape, \
f"grad shape must match tensor shape in {self._ctx!r}, {g.shape!r} != {t.shape!r}"
gt = Tensor(g, device=self.device, requires_grad=False)
t.grad = gt if t.grad is None else (t.grad + gt)
# ***** tinygrad supports many devices *****
@staticmethod
def _move_data(data, device):
if isinstance(data, np.ndarray):
data = data.view(Device.buffers[Device.CPU])
if isinstance(data, Device.buffers[device]):
return data
if Tensor._get_data_dtype(data) != np.float32 and not Tensor.did_float_warning:
# warning? float64 is actually needed for numerical jacobian
print(f"warning, {data.shape!r} isn't float32, it's {data.dtype}")
Tensor.did_float_warning = True
data = data.toCPU().view(Device.buffers[Device.CPU])
return Device.buffers[device].fromCPU(data)
def to_(self, device):
self.data, self.device = self._move_data(self.data, device), device
if self.grad: self.grad.to_(device)
def to(self, device):
ret = Tensor(self.data, device)
if self.grad: ret.grad = self.grad.to(device)
return ret
def detach(self):
return Tensor(self.data, device=self.device)
# ***** non first class ops *****
def __getitem__(self, val):
arg = []
if val is not None:
for i, s in enumerate(val if isinstance(val, (list, tuple)) else [val]):
if isinstance(s, int):
arg.append((s, s + 1))
else:
arg.append((s.start if s.start is not None else 0,
(s.stop if s.stop >=0 else self.shape[i]+s.stop) if s.stop is not None else self.shape[i]))
assert s.step is None or s.step == 1
return self.slice(arg = arg + [(0,self.shape[i]) for i in range(len(arg), len(self.shape))])
def cat(self, y, dim=0):
assert len(self.shape) == len(y.shape)
dim = (dim + len(self.shape)) if dim < 0 else dim
s1, s2 = [], []
for i in range(len(self.shape)):
if i != dim:
assert self.shape[i] == y.shape[i]
s1.append((0, self.shape[i]))
s2.append((0, self.shape[i]))
else:
s1.append((0, self.shape[i]+y.shape[i]))
s2.append((-self.shape[i], y.shape[i]))
return self.slice(arg=s1) + y.slice(arg=s2)
def pad2d(self, padding):
return self[:, :, -padding[2]:self.shape[2]+padding[3], -padding[0]:self.shape[3]+padding[1]]
def dot(self, w):
return self.matmul(w)
def mean(self, axis=None):
out = self.sum(axis=axis)
return out * (np.prod(out.shape)/np.prod(self.shape))
def sqrt(self):
return self.pow(0.5)
def div(self, y):
return self * (y ** -1.0)
__truediv__ = div
def sigmoid(self):
e = self.exp()
return e.div(1 + e)
def swish(self):
return self * self.sigmoid()
def relu6(self):
return self.relu() - (self-6).relu()
def hardswish(self):
return self * (self+3).relu6() * (1/6)
def tanh(self):
return 2.0 * ((2.0 * self).sigmoid()) - 1.0
def leakyrelu(self, neg_slope=0.01):
return self.relu() - (-neg_slope*self).relu()
def softmax(self):
ns = list(self.shape)[:-1]+[1]
m = self.max(axis=len(self.shape)-1).reshape(shape=ns)
e = (self - m).exp()
ss = e.sum(axis=len(self.shape)-1).reshape(shape=ns)
return e.div(ss)
def logsoftmax(self):
ns = list(self.shape)[:-1]+[1]
m = self.max(axis=len(self.shape)-1).reshape(shape=ns)
ss = m + (self-m).exp().sum(axis=len(self.shape)-1).reshape(shape=ns).log()
return self - ss
def dropout(self, p=0.5):
if Tensor.training:
_mask = np.asarray(np.random.binomial(1, 1.0-p, size=self.shape), dtype=self.dtype)
return self * Tensor(_mask, requires_grad=False, device=self.device) * (1/(1.0 - p))
else:
return self
def softplus(self, limit=20, beta=1):
# safe softplus - 1/beta*log(1 + exp(beta*x)) (PyTorch)
eb = (self*beta).exp()
ret = (1 + eb).log()
return (1/beta)*ret
def mish(self):
return self * (self.softplus().tanh()) # x*tanh(softplus(x))
def abs(self):
return self.relu() + (-1.0*self).relu()
def sign(self):
return self / (self.abs() + 1e-10)
def _pool2d(self, py, px):
xup = self[:, :, :self.shape[2]-self.shape[2]%py, :self.shape[3]-self.shape[3]%px]
return xup.reshape(shape=(xup.shape[0], xup.shape[1], xup.shape[2]//py, py, xup.shape[3]//px, px))
def avg_pool2d(self, kernel_size=(2,2)):
return self._pool2d(*kernel_size).mean(axis=(3,5))
def max_pool2d(self, kernel_size=(2,2)):
return self._pool2d(*kernel_size).max(axis=(3,5))
# An instantiation of the Function is the Context
class Function:
def __new__(cls, *args, **kwargs):
cls.forward = staticmethod(cls.forward)
cls.backward = staticmethod(cls.backward)
return super().__new__(cls)
def __init__(self, *tensors):
self.parents = tensors
self.saved_tensors = []
def save_for_backward(self, *x):
self.saved_tensors.extend(x)
def apply(self, *x, **kwargs):
ctx = self(*x) # self - operation i.e 'add', 'sub', etc.
# use default params
params = inspect.signature(self.forward).parameters
for p in params.values():
if p.default is not p.empty:
setattr(ctx, p.name, p.default)
# overwrite with passed params
for k, v in kwargs.items():
setattr(ctx, k, v)
with ProfileOp(ctx.__class__.__name__, x) as po:
po.output = ret = Tensor(self.forward(ctx, *[t.data for t in x], **kwargs),
device=ctx.device, requires_grad=any([t.requires_grad for t in x]))
if ret.requires_grad:
ret._ctx = ctx
return ret
def register(name, fxn, device=Device.CPU):
Tensor.ops[device][name] = fxn
def dispatch(*x, **kwargs):
tt = [arg for arg in x if isinstance(arg, Tensor)][0]
x = [Tensor(np.array([arg], dtype=tt.dtype), device=tt.device, requires_grad=False) if not isinstance(arg, Tensor) else arg for arg in x]
f = Tensor.ops[tt.device][name]
#f.cl_ctx, f.cl_queue, f.device = cl_ctx, cl_queue, tt.device
f.device = tt.device
return f.apply(f, *x, **kwargs)
setattr(Tensor, name, dispatch)
if name in ['add', 'sub', 'mul', 'pow', 'matmul']:
setattr(Tensor, f"__{name}__", dispatch)
setattr(Tensor, f"__i{name}__", lambda self,x: self.assign(dispatch(self,x)))
setattr(Tensor, f"__r{name}__", lambda self,x: dispatch(x,self))
for device in [device for device in Device.__dict__.keys() if device[0] != "_"]:
setattr(Tensor, f"{device.lower()}", functools.partialmethod(Tensor.to, Device.__dict__[device]))
setattr(Tensor, f"{device.lower()}_", functools.partialmethod(Tensor.to_, Device.__dict__[device]))
# this registers all the operations
def _register_ops(namespace, device=Device.CPU):
for name, cls in inspect.getmembers(namespace, inspect.isclass):
if name.endswith("Buffer"): Device.buffers[device] = cls
elif name[0] != "_": register(name.lower(), cls, device=device)
import importlib
for d,ops in Device.imports.items():
try:
_register_ops(importlib.import_module('tinygrad.ops.'+ops), d)
except ImportError:
pass