Files
tinygrad/test/test_tensor.py

125 lines
3.9 KiB
Python

import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor, GPU, Device
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
from .config import ANE
x_init = np.random.randn(1, 3).astype(np.float32)
U_init = np.random.randn(3, 3).astype(np.float32)
V_init = np.random.randn(3, 3).astype(np.float32)
W_init = np.random.randn(3, 3).astype(np.float32)
m_init = np.random.randn(1, 3).astype(np.float32)
class TestTinygrad(unittest.TestCase):
device = Device.CPU
def test_backward_pass(self):
def test_tinygrad():
x = Tensor(x_init, device=self.device)
W = Tensor(W_init, device=self.device)
m = Tensor(m_init, device=self.device)
out = x.dot(W).relu()
out = out.logsoftmax()
out = out.mul(m).add(m).sum()
out.backward()
return out.cpu().data, x.grad.cpu().data, W.grad.cpu().data
def test_pytorch():
x = torch.tensor(x_init, requires_grad=True)
W = torch.tensor(W_init, requires_grad=True)
m = torch.tensor(m_init)
out = x.matmul(W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(m).add(m).sum()
out.backward()
return out.detach().numpy(), x.grad, W.grad
for x, y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_backward_pass_diamond_model(self):
def test_tinygrad():
u = Tensor(U_init, device=self.device)
v = Tensor(V_init, device=self.device)
w = Tensor(W_init, device=self.device)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = out.logsoftmax()
out = out.sum()
out.backward()
return out.cpu().data, u.cpu().grad.data, v.cpu().grad.data, w.cpu().grad.data
def test_pytorch():
u = torch.tensor(U_init, requires_grad=True)
v = torch.tensor(V_init, requires_grad=True)
w = torch.tensor(W_init, requires_grad=True)
x = u.mul(v).relu()
y = u.mul(w).relu()
out = x.add(y).mul(y).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.sum()
out.backward()
return out.detach().numpy(), u.grad, v.grad, w.grad
for x, y in zip(test_tinygrad(), test_pytorch()):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_jacobian(self):
W = np.random.RandomState(1337).random((10, 5))
x = np.random.RandomState(7331).random((1, 10)) - 0.5
torch_x = torch.tensor(x, requires_grad=True)
torch_W = torch.tensor(W, requires_grad=True)
torch_func = lambda x: torch.nn.functional.log_softmax(
x.matmul(torch_W).relu(), dim=1
)
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
tiny_x = Tensor(x, device=self.device)
tiny_W = Tensor(W, device=self.device)
tiny_func = lambda x: x.dot(tiny_W).relu().logsoftmax()
J = jacobian(tiny_func, tiny_x)
NJ = numerical_jacobian(tiny_func, tiny_x)
np.testing.assert_allclose(PJ, J, atol=1e-5)
np.testing.assert_allclose(PJ, NJ, atol=1e-5)
def test_gradcheck(self):
W = np.random.RandomState(1337).random((10, 5))
x = np.random.RandomState(7331).random((1, 10)) - 0.5
tiny_x = Tensor(x, device=self.device)
tiny_W = Tensor(W, device=self.device)
tiny_func = lambda x: x.dot(tiny_W).relu().logsoftmax()
self.assertTrue(gradcheck(tiny_func, tiny_x))
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps=0.1))
@unittest.skipUnless(GPU, "Requires GPU")
class TestTinygradGPU(TestTinygrad):
device = Device.GPU
@unittest.skip("float64 not supported on GPU")
def test_jacobian(self):
pass
@unittest.skip("float64 not supported on GPU")
def test_gradcheck(self):
pass
@unittest.skipUnless(ANE, "Requires ANE")
class TestOpsANE(TestTinygrad):
device = Device.ANE
if __name__ == "__main__":
unittest.main()