Files
tinygrad/test/models/test_efficientnet.py
chenyu 0a98fd38b3 fix tests that failed locally on mac (#13872)
keccak output was silently broken without contiguous
2025-12-29 11:23:38 -05:00

114 lines
3.2 KiB
Python

import ast, pathlib, unittest
import numpy as np
from PIL import Image
from tinygrad import Tensor
from tinygrad.helpers import getenv
from test.helpers import slow
from extra.models.efficientnet import EfficientNet
from extra.models.vit import ViT
from extra.models.resnet import ResNet50
def _load_labels():
labels_filename = pathlib.Path(__file__).parent / 'efficientnet/imagenet1000_clsidx_to_labels.txt'
return ast.literal_eval(labels_filename.read_text())
_LABELS = _load_labels()
def preprocess(img, new=False):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0, x0 =(np.asarray(img.shape)[:2] - 224) // 2
img = img[y0: y0 + 224, x0: x0 + 224]
# low level preprocess
if new:
img = img.astype(np.float32)
img -= [127.0, 127.0, 127.0]
img /= [128.0, 128.0, 128.0]
img = img[None]
else:
img = np.moveaxis(img, [2, 0, 1], [0, 1, 2])
img = img.astype(np.float32)[:3].reshape(1, 3, 224, 224)
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape((1, -1, 1, 1))
img /= np.array([0.229, 0.224, 0.225]).reshape((1, -1, 1, 1))
return img
def _infer(model: EfficientNet, img):
with Tensor.train(False):
out = model.forward(Tensor(img)).argmax(axis=-1)
return out.tolist()
chicken_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/Chicken.jpg'))
car_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/car.jpg'))
class TestEfficientNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = EfficientNet(number=getenv("NUM"))
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
@slow
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "hen")
@slow
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
def test_chicken_car(self):
labels = _infer(self.model, np.concatenate([chicken_img, car_img], axis=0))
self.assertEqual(_LABELS[labels[0]], "hen")
self.assertEqual(_LABELS[labels[1]], "sports car, sport car")
class TestViT(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ViT()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "cock")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "racer, race car, racing car")
class TestResNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ResNet50()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
# NOTE: logits for these two are close
self.assertIn(_LABELS[labels[0]], ("hen", "cock"))
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
if __name__ == '__main__':
unittest.main()