Files
tinygrad/extra/torch_backend/test_kernel_fusion.py
Roelof van Dijk 0dc2ff431d fix: revive torch backend (#13280)
* fix: revive torch backend

* as_strided view vs copy

* Revert "as_strided view vs copy"

This reverts commit 82a61223f2.

* add extra tests (move inplace, add fusion tests)

* better fusion with inplace_op

* no optimizer hooks (break mnist training fusion)

* split off fusion tests in separate file, assert on resnet fusion

fix: remove comments

* cleanup, reduce diff

* reduce diff

* better fusion and identity checks

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-11-19 15:26:50 -08:00

145 lines
4.5 KiB
Python

# simple tests
import unittest
import torch
import warnings
from tinygrad.helpers import getenv, GlobalCounters
if getenv("TINY_BACKEND2"):
import extra.torch_backend.backend2
device = "cpu"
else:
import extra.torch_backend.backend
device = "tiny"
class TestKernelFusionRegression(unittest.TestCase):
def _realize(self, t): _ = t.detach().cpu().numpy()
def _check_kernel_count(self, fn, expected_kernels):
torch.manual_seed(42)
GlobalCounters.reset()
fn().detach().cpu().numpy()
expectation = f"{GlobalCounters.kernel_count} vs {expected_kernels} expected."
if GlobalCounters.kernel_count < expected_kernels: warnings.warn(f"{expectation} Expectation can be lowered.", UserWarning)
self.assertLessEqual(GlobalCounters.kernel_count, expected_kernels, f"{expectation}")
def test_elementwise_fusion(self):
def fn():
x = torch.randn(128, 128, device=device)
return (x + 1.0) * 2.0 - 0.5
self._check_kernel_count(fn, 6)
def test_relu_fusion(self):
def fn():
x = torch.randn(1, 3, 32, 32, device=device)
conv = torch.nn.Conv2d(3, 16, 3, padding=1).to(device)
with torch.no_grad():
return torch.nn.functional.relu(conv(x))
self._check_kernel_count(fn, 8)
def test_batchnorm_fusion(self):
def fn():
x = torch.randn(2, 3, 16, 16, device=device)
conv = torch.nn.Conv2d(3, 8, 3, padding=1).to(device)
bn = torch.nn.BatchNorm2d(8).to(device)
bn.eval()
with torch.no_grad():
return torch.nn.functional.relu(bn(conv(x)))
self._check_kernel_count(fn, 16)
def test_reduce_fusion(self):
def fn():
x = torch.randn(64, 64, device=device)
return (x * 2.0).sum()
self._check_kernel_count(fn, 7)
def test_matmul_elementwise_fusion(self):
def fn():
x = torch.randn(32, 32, device=device)
w = torch.randn(32, 32, device=device)
return torch.nn.functional.relu(x @ w + 1.0)
self._check_kernel_count(fn, 6)
def test_pooling_fusion(self):
def fn():
x = torch.randn(1, 8, 16, 16, device=device)
return torch.nn.functional.max_pool2d(x * 2.0, 2)
self._check_kernel_count(fn, 5)
def test_residual_add_relu_fusion(self):
def fn():
x = torch.randn(1, 8, 16, 16, device=device)
identity = torch.randn(1, 8, 16, 16, device=device)
out = x + identity
return torch.nn.functional.relu(out)
self._check_kernel_count(fn, 6)
def test_inplace_add_relu_fusion(self):
def fn():
x = torch.randn(1, 16, 32, 32, device=device)
y = torch.randn(1, 16, 32, 32, device=device)
x += y
return torch.nn.functional.relu(x)
self._check_kernel_count(fn, 6)
def test_conv_bn_add_relu_fusion(self):
def fn():
x = torch.randn(1, 8, 16, 16, device=device)
identity = torch.randn(1, 8, 16, 16, device=device)
conv = torch.nn.Conv2d(8, 8, 3, padding=1, bias=False).to(device)
bn = torch.nn.BatchNorm2d(8).to(device)
bn.eval()
with torch.no_grad():
out = bn(conv(x))
out += identity
return torch.nn.functional.relu(out)
self._check_kernel_count(fn, 16)
def test_multiple_inplace_ops_fusion(self):
def fn():
x = torch.randn(64, 64, device=device)
x += 1.0
x *= 2.0
return torch.nn.functional.relu(x)
self._check_kernel_count(fn, 4)
def test_view_inplace_no_fusion_break(self):
def fn():
x = torch.randn(4, 64, device=device)
view = x[1:3]
view += 1.0
return x.sum()
self._check_kernel_count(fn, 8)
def test_batchnorm_running_stats_update(self):
def fn():
x = torch.randn(2, 8, 8, 8, device=device)
bn = torch.nn.BatchNorm2d(8).to(device)
bn.train()
with torch.no_grad():
return bn(x)
self._check_kernel_count(fn, 10)
# this is a minimal extra/other_mnist/beautiful_mnist_torch.py to cover fusion for training with optimizer
def test_mnist_training_fusion(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Conv2d(1, 8, 3, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2),
torch.nn.Flatten(),
torch.nn.Linear(8*14*14, 10)
).to(device)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)
x = torch.randn(32, 1, 28, 28, device=device)
labels = torch.randint(0, 10, (32,), device=device)
out = model(x)
loss = torch.nn.functional.cross_entropy(out, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
self._check_kernel_count(fn, 33)
if __name__ == "__main__":
unittest.main()