Files
tinygrad/extra/torch_backend/test.py
George Hotz 2158dc4849 full fix for as_strided in torch backend (#9257)
* fixes from chargpt for torch backend

* shrink support

* add stride support

* comment cleanup

* a few more

* work

* import the stream hack

* llvm multi auto
2025-02-26 22:34:05 +08:00

87 lines
2.7 KiB
Python

# simple tests
import unittest
import torch
import numpy as np
from tinygrad.helpers import getenv
if getenv("TINY_BACKEND2"):
import extra.torch_backend.backend2
device = "cpu"
else:
import extra.torch_backend.backend
device = "tiny"
class TestTorchBackend(unittest.TestCase):
def test_numpy_ones(self):
a = torch.ones(4, device=device)
np.testing.assert_equal(a.cpu().numpy(), [1,1,1,1])
def test_numpy_ones(self):
a = torch.ones(4, dtype=torch.int32, device=device)
assert a.dtype == torch.int32
np.testing.assert_equal(a.cpu().numpy(), [1,1,1,1])
def test_plus(self):
a = torch.ones(4, device=device)
b = torch.ones(4, device=device)
c = a+b
np.testing.assert_equal(c.cpu().numpy(), [2,2,2,2])
def test_expand(self):
a = torch.Tensor([1,2,3,4]).to(device)
out = a.reshape(4,1).expand(4,4)
np.testing.assert_equal(out.cpu().numpy(), [[1,1,1,1],[2,2,2,2],[3,3,3,3],[4,4,4,4]])
def test_reshape(self):
a = torch.Tensor([[1,2],[3,4]]).to(device)
np.testing.assert_equal(a.reshape(4).cpu().numpy(), [1,2,3,4])
np.testing.assert_equal(a.reshape(2,1,2).cpu().numpy(), [[[1,2]],[[3,4]]])
np.testing.assert_equal(a.unsqueeze(1).cpu().numpy(), [[[1,2]],[[3,4]]])
np.testing.assert_equal(a.unsqueeze(1).unsqueeze(1).cpu().numpy(), [[[[1,2]]],[[[3,4]]]])
np.testing.assert_equal(a.unsqueeze(1).unsqueeze(1).squeeze().cpu().numpy(), [[1,2],[3,4]])
def test_permute(self):
a = torch.Tensor([[1,2],[3,4]]).to(device)
print(a.stride())
null = a.permute(0,1)
perm = a.permute(1,0)
back = perm.permute(1,0)
np.testing.assert_equal(a.cpu().numpy(), [[1,2],[3,4]])
np.testing.assert_equal(null.cpu().numpy(), [[1,2],[3,4]])
np.testing.assert_equal(perm.cpu().numpy(), [[1,3],[2,4]])
np.testing.assert_equal(back.cpu().numpy(), [[1,2],[3,4]])
def test_shrink(self):
a = torch.Tensor([1,2,3,4]).to(device)
np.testing.assert_equal(a[:3].cpu().numpy(), [1,2,3])
np.testing.assert_equal(a[1:].cpu().numpy(), [2,3,4])
def test_plus_inplace(self):
a = torch.ones(4, device=device)
b = torch.ones(4, device=device)
a += b
a += b
np.testing.assert_equal(a.cpu().numpy(), [3,3,3,3])
def test_exp2(qself):
a = torch.ones(4, device=device)
b = a.exp2()
np.testing.assert_equal(b.cpu().numpy(), [2,2,2,2])
def test_isfinite(self):
a = torch.ones(4, device=device)
np.testing.assert_equal(torch.isfinite(a).cpu().numpy(), [True, True, True, True])
def test_eq(self):
a = torch.ones(4, device=device)
b = torch.ones(4, device=device)
c = a == b
print(c.cpu().numpy())
@unittest.skip("meh")
def test_str(self):
a = torch.ones(4, device=device)
print(str(a))
if __name__ == "__main__":
unittest.main()