Files
tinygrad/test/models/test_efficientnet.py
chenyu a1881b0c17 update test_chicken (#12466)
logits are close, just numerical
2025-10-06 03:58:44 -04:00

113 lines
3.3 KiB
Python

import ast, pathlib, unittest
import numpy as np
from PIL import Image
from tinygrad import Tensor
from tinygrad.helpers import getenv, CI
from extra.models.efficientnet import EfficientNet
from extra.models.vit import ViT
from extra.models.resnet import ResNet50
def _load_labels():
labels_filename = pathlib.Path(__file__).parent / 'efficientnet/imagenet1000_clsidx_to_labels.txt'
return ast.literal_eval(labels_filename.read_text())
_LABELS = _load_labels()
def preprocess(img, new=False):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0, x0 =(np.asarray(img.shape)[:2] - 224) // 2
img = img[y0: y0 + 224, x0: x0 + 224]
# low level preprocess
if new:
img = img.astype(np.float32)
img -= [127.0, 127.0, 127.0]
img /= [128.0, 128.0, 128.0]
img = img[None]
else:
img = np.moveaxis(img, [2, 0, 1], [0, 1, 2])
img = img.astype(np.float32)[:3].reshape(1, 3, 224, 224)
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape((1, -1, 1, 1))
img /= np.array([0.229, 0.224, 0.225]).reshape((1, -1, 1, 1))
return img
def _infer(model: EfficientNet, img):
with Tensor.train(False):
out = model.forward(Tensor(img)).argmax(axis=-1)
return out.tolist()
chicken_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/Chicken.jpg'))
car_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/car.jpg'))
class TestEfficientNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = EfficientNet(number=getenv("NUM"))
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
@unittest.skipIf(CI, "covered by test_chicken_car")
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "hen")
@unittest.skipIf(CI, "covered by test_chicken_car")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
def test_chicken_car(self):
labels = _infer(self.model, np.concat([chicken_img, car_img], axis=0))
self.assertEqual(_LABELS[labels[0]], "hen")
self.assertEqual(_LABELS[labels[1]], "sports car, sport car")
class TestViT(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ViT()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "cock")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "racer, race car, racing car")
class TestResNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ResNet50()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
# NOTE: logits for these two are close
self.assertIn(_LABELS[labels[0]], ("hen", "cock"))
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
if __name__ == '__main__':
unittest.main()