Files
tinygrad/examples/mlperf
chenyu 43c3f73fbc handcode_bert_opt.py (#5295)
similar to handcode_resnet50_opt.py, one file to check bert kernels without dataset.
2024-07-05 11:01:20 -04:00
..
2024-07-05 11:01:20 -04:00
2024-06-26 12:23:56 -04:00
2023-05-10 16:30:49 -07:00

Each model should be a clean single file.
They are imported from the top level `models` directory

It should be capable of loading weights from the reference imp.

We will focus on these 5 models:

# Resnet50-v1.5 (classic) -- 8.2 GOPS/input
# Retinanet
# 3D UNET (upconvs)
# RNNT
# BERT-large (transformer)

They are used in both the training and inference benchmark:
https://mlcommons.org/en/training-normal-21/
https://mlcommons.org/en/inference-edge-30/
And we will submit to both.

NOTE: we are Edge since we don't have ECC RAM