Files
tinygrad/test/test_nn.py
David Hou 3151d91f6e 3x3 winograd convs (#1675)
* winograd

* simplify local groups code

* comment

* respects self.opts.has_local

* always simplify ones

* make mypy happy

* move reshape, WINO flag

* wino flag, simple forward backward test for wino

* extra wino test

* merge oops

* comments

* axis_needs_valid -> axis_is_masked

* don't delete needs_valid (it's unused though)

* make linter happy

* make linter happy

* smaller test

* change number

* make wino tests very small
2023-09-03 07:29:43 -07:00

339 lines
12 KiB
Python
Executable File

#!/usr/bin/env python
import unittest
import numpy as np
from extra.utils import WINDOWS
from tinygrad.helpers import getenv
from tinygrad.jit import TinyJit
from tinygrad.tensor import Tensor, Device
from tinygrad.nn import BatchNorm2d, Conv1d, ConvTranspose1d, Conv2d, ConvTranspose2d, Linear, GroupNorm, LayerNorm, LayerNorm2d, Embedding, InstanceNorm
import torch
import pytest
pytestmark = [pytest.mark.exclude_cuda]
class TestNN(unittest.TestCase):
def test_sparse_cat_cross_entropy(self):
input = torch.randn(3, 5)
target = torch.empty(3, dtype=torch.long).random_(5)
loss_fun = torch.nn.CrossEntropyLoss(reduction='mean')
loss = loss_fun(input, target)
input_tiny = Tensor(input.detach().numpy())
taret_tiny = Tensor(target.detach().numpy())
loss_tiny = input_tiny.sparse_categorical_crossentropy(taret_tiny)
np.testing.assert_allclose(loss_tiny.numpy(), loss.detach().numpy(), atol=1e-5, rtol=1e-6)
def test_batchnorm2d(self, training=False):
szs = [4, 8, 16, 32]
for sz in szs:
# create in tinygrad
Tensor.training = training
bn = BatchNorm2d(sz, eps=1e-5, track_running_stats=training)
bn.weight = Tensor.randn(sz)
bn.bias = Tensor.randn(sz)
bn.running_mean = Tensor.randn(sz)
bn.running_var = Tensor.randn(sz)
bn.running_var.numpy()[bn.running_var.numpy() < 0] = 0
# create in torch
with torch.no_grad():
tbn = torch.nn.BatchNorm2d(sz).eval()
tbn.training = training
tbn.weight[:] = torch.tensor(bn.weight.numpy())
tbn.bias[:] = torch.tensor(bn.bias.numpy())
tbn.running_mean[:] = torch.tensor(bn.running_mean.numpy())
tbn.running_var[:] = torch.tensor(bn.running_var.numpy())
np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6)
np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5, atol=1e-6)
# trial
inn = Tensor.randn(2, sz, 3, 3)
# in tinygrad
outt = bn(inn)
# in torch
toutt = tbn(torch.tensor(inn.numpy()))
# close
np.testing.assert_allclose(outt.numpy(), toutt.detach().numpy(), rtol=5e-4, atol=1e-6)
np.testing.assert_allclose(bn.running_mean.numpy(), tbn.running_mean.detach().numpy(), rtol=1e-5, atol=1e-6)
np.testing.assert_allclose(bn.running_var.numpy(), tbn.running_var.detach().numpy(), rtol=1e-5, atol=1e-6)
def test_batchnorm2d_training(self):
self.test_batchnorm2d(True)
def test_linear(self):
def _test_linear(x):
# create in tinygrad
model = Linear(in_dim, out_dim)
z = model(x)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.Linear(in_dim, out_dim).eval()
torch_layer.weight[:] = torch.tensor(model.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(model.bias.numpy(), dtype=torch.float32)
torch_x = torch.tensor(x.numpy(), dtype=torch.float32)
torch_z = torch_layer(torch_x)
# test
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
BS, T, in_dim, out_dim = 4, 2, 8, 16
_test_linear(Tensor.randn(BS, in_dim))
_test_linear(Tensor.randn(BS, T, in_dim)) # test with more dims
def test_conv1d(self):
BS, C1, W = 4, 16, 224
C2, K, S, P = 64, 7, 2, 1
# create in tinygrad
layer = Conv1d(C1, C2, kernel_size=K, stride=S, padding=P)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.Conv1d(C1, C2, kernel_size=K, stride=S, padding=P).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.uniform(BS, C1, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
def test_conv2d(self):
BS, C1, H, W = 4, 16, 224, 224
C2, K, S, P = 64, 7, 2, 1
# create in tinygrad
layer = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.Conv2d(C1, C2, kernel_size=K, stride=S, padding=P).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.uniform(BS, C1, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
@unittest.skipIf(Device.DEFAULT != "TORCH", "Takes too long to compile for Compiled backends")
def test_conv2d_winograd(self):
BS, C1, H, W = 2, 8, 16, 16
C2, K, S, P = 8, 3, 1, 1
Tensor.wino = True
# create in tinygrad
layer = Conv2d(C1, C2, kernel_size=K, stride=S, padding=P)
layer.weight.requires_grad = True
layer.bias.requires_grad = True
# create in torch
torch_layer = torch.nn.Conv2d(C1, C2, kernel_size=K, stride=S, padding=P).eval()
torch_layer.weight = torch.nn.Parameter(torch.tensor(layer.weight.numpy(), dtype=torch.float32))
torch_layer.bias = torch.nn.Parameter(torch.tensor(layer.bias.numpy(), dtype=torch.float32))
# test
x = Tensor.uniform(BS, C1, H, W, requires_grad=True)
z = layer(x)
torch_x = torch.tensor(x.numpy(), requires_grad=True)
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
m = z.mean()
m.backward()
gw = layer.weight.grad.realize()
gb = layer.bias.grad.realize()
gx = x.grad.realize()
torch_z.mean().backward()
np.testing.assert_allclose(gw.numpy(), torch_layer.weight.grad.numpy(), atol=5e-4, rtol=1e-5)
np.testing.assert_allclose(gb.numpy(), torch_layer.bias.grad.numpy(), atol=5e-4, rtol=1e-5)
np.testing.assert_allclose(gx.numpy(), torch_x.grad.numpy(), atol=5e-4, rtol=1e-5)
Tensor.wino = False
@unittest.skipIf(getenv("CI", "") != "" and (WINDOWS or Device.DEFAULT == "WEBGPU"), "runs out of memory in CI")
def test_conv_transpose1d(self):
BS, C1, W = 4, 16, 224
C2, K, S, P = 64, 7, 2, 1
# create in tinygrad
layer = ConvTranspose1d(C1, C2, kernel_size=K, stride=S, padding=P)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.ConvTranspose1d(C1, C2, kernel_size=K, stride=S, padding=P).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.uniform(BS, C1, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
@unittest.skipIf(getenv("CI", "") != "" and (WINDOWS or Device.DEFAULT == "WEBGPU"), "runs out of memory in CI")
def test_conv_transpose2d(self):
BS, C1, H, W = 4, 16, 224, 224
C2, K, S, P = 64, 7, 2, 1
# create in tinygrad
layer = ConvTranspose2d(C1, C2, kernel_size=K, stride=S, padding=P)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.ConvTranspose2d(C1, C2, kernel_size=K, stride=S, padding=P).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.uniform(BS, C1, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-4, rtol=1e-5)
def test_groupnorm(self):
BS, H, W, C, G = 20, 10, 10, 6, 3
# create in tinygrad
layer = GroupNorm(G, C)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.GroupNorm(G, C).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.randn(BS, C, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
def test_layernorm(self):
N, C, H, W = 20, 5, 10, 10
# create in tinygrad
layer = LayerNorm([H, W])
# create in torch
with torch.no_grad():
torch_layer = torch.nn.LayerNorm([H, W]).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.randn(N, C, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
def test_layernorm_2d(self):
N, C, H, W = 20, 5, 10, 10
# create in tinygrad
layer = LayerNorm2d(C)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.LayerNorm([C]).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.randn(N, C, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x.permute(0,2,3,1)).permute(0,3,1,2)
def test_instancenorm_2d(self):
N, C, H, W = 20, 5, 10, 10
# create in tinygrad
layer = InstanceNorm(C)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.InstanceNorm2d(C, affine=True).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.randn(N, C, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
def test_instancenorm_3d(self):
N, C, D, H, W = 20, 5, 3, 10, 10
# create in tinygrad
layer = InstanceNorm(C)
# create in torch
with torch.no_grad():
torch_layer = torch.nn.InstanceNorm3d(C, affine=True).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
torch_layer.bias[:] = torch.tensor(layer.bias.numpy(), dtype=torch.float32)
# test
x = Tensor.randn(N, C, D, H, W)
z = layer(x)
torch_x = torch.tensor(x.numpy())
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
def test_embedding(self):
B, T, C, VS = 4, 10, 20, 28
# create in tinygrad
layer = Embedding(VS, C)
with torch.no_grad():
torch_layer = torch.nn.Embedding(VS, C).eval()
torch_layer.weight[:] = torch.tensor(layer.weight.numpy(), dtype=torch.float32)
# test
x = Tensor(np.random.randint(0, VS, (B, T)).astype(np.float32))
z = layer(x)
torch_x = torch.tensor(x.numpy().astype(np.int32))
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=1e-8, rtol=1e-8)
# test with jit enabled
@TinyJit
def layer_jit(x):
return layer(x).realize()
for _ in range(3):
x = Tensor(np.random.randint(0, VS, (B, T)).astype(np.float32))
z = layer_jit(x)
torch_x = torch.tensor(x.numpy().astype(np.int32))
torch_z = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=1e-8, rtol=1e-8)
if __name__ == '__main__':
unittest.main()