Files
tinygrad/extra/gemm/asm/cdna/test.py
qazal 2cc64d71b0 simplify mi350x gemm / viz asm tests (#13984)
* mi350x gemm cleanup

* asm tests work

* simpler asm tests
2026-01-03 11:11:07 +09:00

73 lines
2.4 KiB
Python

# Run assembly on the AMD runtime and check correctness
# VIZ=2 to profile
import pathlib
from tinygrad import Tensor, Device, dtypes, Context
from tinygrad.uop.ops import UOp, Ops, KernelInfo
from tinygrad.helpers import getenv
fp = pathlib.Path(__file__).parent/"gemm.s"
N = getenv("N", 8192)
THREADS_PER_WG = 256
NUM_WG = N//THREADS_PER_WG * N//THREADS_PER_WG
assert N % THREADS_PER_WG == 0, "N must be divisible by THREADS_PER_WG"
# ** generate inputs on CPU
scale = 10.0
import torch
torch.manual_seed(0)
A = (torch.randn(N, N, dtype=torch.float32, device="cpu") / scale).to(torch.bfloat16).contiguous()
B = (torch.randn(N, N, dtype=torch.float32, device="cpu") / scale).to(torch.bfloat16).contiguous()
Bt = B.t().contiguous() # transpose B for the asm gemm
C_torch = A@B
# ** copy buffers to AMD
# input creation and validation run on the copy engine for simpler tracing
def from_torch(t:torch.Tensor) -> Tensor:
return Tensor.from_blob(t.data_ptr(), t.shape, dtype=dtypes.bfloat16, device="cpu").to(Device.DEFAULT).realize()
C_tiny = from_torch(A) @ from_torch(B)
C_asm = Tensor.empty_like(C_tiny)
# ** assembly custom kernel
def custom_asm_gemm(C:UOp, A:UOp, B:UOp) -> UOp:
lidx = UOp.special(THREADS_PER_WG, "lidx0")
gidx = UOp.special(NUM_WG, "gidx0")
src = (pathlib.Path(__file__).parent/"template.s").read_text().replace("INSTRUCTIONS", fp.read_text())
sz = UOp.variable("SZ", 256, 8192)
sink = UOp.sink(C.base, A.base, B.base, sz, lidx, gidx, arg=KernelInfo(name="gemm"))
return UOp(Ops.PROGRAM, src=(sink, UOp(Ops.DEVICE, arg=Device.DEFAULT), UOp(Ops.LINEAR, src=(*sink.src, sink)), UOp(Ops.SOURCE, arg=src)), arg=())
C_asm = Tensor.custom_kernel(C_asm, from_torch(A), from_torch(Bt), fxn=custom_asm_gemm)[0]
# ** run gemms
sched = Tensor.schedule(C_tiny, C_asm)
eis = [si.lower() for si in sched]
with Context(DEBUG=2):
for ei in eis:
et = ei.run({"SZ":N}, wait=True)
print(f"{(N*N*N*2 / et)*1e-12:.2f} REAL TFLOPS")
# ** correctness
import ctypes
def torch_bf16(t:Tensor) -> torch.tensor:
asm_out = t.to("cpu").realize().uop.buffer._buf
buf = (ctypes.c_uint16*C_asm.uop.size).from_address(asm_out.va_addr)
return torch.frombuffer(buf, dtype=torch.bfloat16, count=C_asm.uop.size).reshape(C_asm.shape)
assert torch.allclose(torch_bf16(C_asm), C_torch, rtol=1e-2, atol=1e-3)
assert torch.allclose(torch_bf16(C_tiny), C_torch, rtol=1e-2, atol=1e-3)