Files
tinygrad/extra/optimization/test_beam_search.py
wozeparrot a0ab755317 threefry again (#3785)
* feat: initial xor

* feat: initial threefly

* feat: remove custom random

* fix: really need to install precommit

* feat: lmao forgot that this is rotate not a shift

* clean: put that there

* feat: numpy xor

* feat: quick test for xor

* feat: llvm xor

* feat: slightly working xor in torch

* feat: rand works in jit

* clean: save a line

* feat: match jax

* feat: maybe test against jax

* feat: requires_grad

* fix: fix test_symbolic_ops

* feat: lower alpha

* feat: just pad

* fix: maybe fix training tests?

* fix: fix some llvm stuff

* feat: cursed realize on the way out

* feat: testing jax

* fix: why is the jax install process not simple

* fix: maybe passing test

* fix: symbolic workarounds

* clean: still need that precommit

* fix: aaaa

* fix: more test fixes

* fix: quick fix for wgsl

* feat: need to set requires_grad on the final tensor

* feat: one more tensor

* feat: don't take forever

* feat: seeing y ci is brok

* feat: can't allocate 64GiB lmao

* fix: fix this

* feat: hope this doesn't break smth before i go to bed

* feat: don't destroy ram

* feat: int

* feat: remove jax

* feat: properish workaround?

* feat: skip slow webgpu tests

* feat: no longer fails

* feat: use dtypes

* feat: real number

* fix: torch

* fix: don't test against reference for torch

* feat: to device

* feat: fix advanced indexing

* feat: correct casting

* feat: even rng_counter

* feat: match master

* feat: this was actually bad

* fix: maybe?

* feat: store

* feat: remove realizes

* feat: somehow this is important

* feat: somehow this is also important

* feat: save a line

* fix: don't need that anymore

* feat: restore this

* fix: linter

* feat: remove realizes

* fix: realized is in base now

* fix: add back cast

* fix: bump deadline

* fix: bump deadline

* fix: bump deadline

* fix: bump deadline

* fix: bump deadline

* fix: :(

* fix: :(

* fix: not being dumb

* feat: try changing less tests

* feat: shouldn't have to change that

* feat: contiguous bumps it by one

* fix: hmm

* fix: numpy memory moment

* fix: cl_khr_fp16

* fix: torch has different tensor count

* fix: missing contiguous

* hmm: hmm

* fix: some fixes

* fix: typing

* feat: dont do that

* feat: typing fixes

* feat: why is this realize required?

* feat: ngl kinda odd typing

* feat: oh

* feat: remove realizes

* feat: why is this realize required?

* fix: hacky patch for cudacpu

* fix: without this realize pytest crashes?????

* fix: shorter line

* fix: cudacpu fixes

* fix: cudacpu fixes

* feat: real buffer

* feat: don't search when searching lmao

* fix: can't use contiguous things

* fix: no more 100GB arrays

* fix: revert

* fix: skip 7 and 10

* feat: working ish beam

* feat: minimize changes

* feat: seed 0 stable diffusion example changed

* fix: different on ci

* fix: no beam

* feat: make threefry optional

* fix: check value

* fix: unused import

* feat: threefry default

* fix: 5d

* feat: allow non upcast div

* fix: 5d better

* fix: 5d better

* fix: save all dtype

* feat: proper error

* feat: lazyop key

* fix: check float

* feat: try removing this realize now

* feat: disable threefry for uops hip tensor cores

* feat: don't need that

* feat: only check upcast

* fix: disable threefry for some metal tests

* feat: disable for metal tensor uops as well

* feat: disable for most uops

* fix: disable threefry for new uops tests

* feat: multitensor

* fix: typing

* feat: threefry default off

* feat: skip threefry half rand

* feat: restore old

* fix: bad git

* clean: ruff

* feat: bfloat16 fix

* fix: :|

* feat: restore old

---------

Co-authored-by: chenyu <chenyu@fastmail.com>
2024-03-18 16:47:07 -04:00

80 lines
2.3 KiB
Python

import unittest
import numpy as np
from tinygrad.helpers import BEAM, Timing, CI
from tinygrad.shape.symbolic import Variable
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d
def rand(*shape):
if CI: return Tensor(np.random.rand(*shape))
return Tensor.rand(*shape)
class TestBeamSearch(unittest.TestCase):
def setUp(self):
self.old_beam = BEAM.value
BEAM.value = 2
def tearDown(self):
BEAM.value = self.old_beam
def test_variable_ast_beam(self):
a = rand(3, 3).reshape((Variable("a", 1, 10).bind(3), 3))
a = (a+1).realize()
def test_big_prime_number(self):
a = rand(367, 367)
b = rand(367, 367)
c = (a@b).realize()
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
def test_big_prime_number_max(self):
a = -rand(367, 367)
b = rand(367, 367)
# if incorrectly padded 0, the max would be 0 instead of a negative number
c = (a*b).max(1)
np.testing.assert_allclose(c.numpy(), (a.numpy() * b.numpy()).max(1), atol=1e-4, rtol=1e-4)
def test_big_prime_number_sum(self):
a = rand(367, 367)
b = rand(367, 367)
# if incorrectly padded 0, the sum would be inf
c = (a/b).sum(1).realize()
np.testing.assert_allclose(c.numpy(), (a.numpy() / b.numpy()).sum(1), atol=1e-4, rtol=1e-4)
def test_variable_big_prime_number(self):
v = Variable("v", 1, 400).bind(367)
a = rand(367, 367)
b = rand(367, 367)
c = (a.reshape(367, v) @ b.reshape(v, 367)).realize()
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
def test_variable_shrink_prime_number(self):
v = Variable("v", 1, 400).bind(367)
a = rand(400, 367)
b = (a.shrink(((0,v), None))+1).reshape(367,367).realize()
np.testing.assert_allclose(b.numpy(), a.numpy()[:367]+1, atol=1e-4, rtol=1e-4)
def test_no_mutate_rawbuffers(self):
a = rand(3, 3).realize()
desired = a.numpy() + 1
a.assign(a+1)
actual = a.numpy()
np.testing.assert_allclose(actual, desired)
@unittest.skipIf(CI, "flaky. CL_OUT_OF_RESOURCES")
def test_conv_beam(self):
c = Conv2d(3, 16, (3,3))
x = rand(1,3,32,32)
with Timing():
c(x).realize()
def test_large_ast(self):
a = Tensor.rand(3, 3)
for _ in range(5):
for _ in range(4):
a = (a + a) * a
a.realize()
if __name__ == '__main__':
unittest.main()