Files
tinygrad/openpilot/compile2.py
George Hotz 2e60012bcf move create schedule and delete old API (#3377)
* move create schedule and delete old API

* fix test multitensor
2024-02-12 18:10:45 +01:00

132 lines
5.3 KiB
Python

#!/usr/bin/env python3
import os, sys, io, pathlib, re
sys.path.insert(0, str(pathlib.Path(__file__).parents[1]))
if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1"
if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2"
if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1"
if "OPT" not in os.environ: os.environ["OPT"] = "99"
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx"
import onnx
from tqdm import tqdm
from typing import Tuple, List, Optional, Dict
from extra.onnx import get_run_onnx
from tinygrad import Tensor, Device, GlobalCounters, dtypes
from tinygrad.dtype import ImageDType
from tinygrad.helpers import partition, Context, fetch, getenv, GRAPH, DEBUG
from tinygrad.realize import run_schedule, lower_schedule_item, create_schedule
from tinygrad.ops import LoadOps, ScheduleItem
Device.DEFAULT = "GPU"
def get_schedule(onnx_data) -> Tuple[List[ScheduleItem], List[ScheduleItem]]:
Tensor.no_grad = True
Tensor.training = False
# load the model
onnx_model = onnx.load(io.BytesIO(onnx_data))
run_onnx = get_run_onnx(onnx_model)
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
# run the model
inputs = {k:Tensor.empty(*shp) for k,shp in input_shapes.items()}
ret: Tensor = next(iter(run_onnx(inputs).values())).cast(dtypes.float32).contiguous()
schedule = create_schedule([ret.lazydata])
# filter schedule that don't depend on the inputs
input_lb = [x.lazydata.base for x in inputs.values()]
depends = set(input_lb)
for si in schedule:
if any(b in depends for b in si.inputs):
depends.add(si.out)
# run all kernels that don't depend on the inputs
# NOTE: there's two extra kernels due to fusions that now happen since the weights aren't realized
schedule, schedule_independent = partition(schedule, lambda si: si.out in depends)
print(f"{len(schedule)} schedule items depend on the input, {len(schedule_independent)} don't")
# confirm no loadops in the (non independent) schedule except for the ones that load the input buffers
assert all(si.ast.op not in LoadOps or si.out in input_lb for si in schedule), "has loadops, can't compile to Thneed"
return schedule, schedule_independent, inputs
def test_vs_onnx(onnx_data, schedule:Optional[List[ScheduleItem]], inputs:Dict[str, Tensor]):
import onnx
#import pyopencl as cl
#from extra.thneed import Thneed
import numpy as np
onnx_model = onnx.load(io.BytesIO(onnx_data))
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
Tensor.manual_seed(1337)
new_inputs = {k:Tensor.randn(*shp, requires_grad=False)*8 for k,shp in input_shapes.items()}
new_np_inputs = {k:v.realize().numpy() for k,v in new_inputs.items()}
if getenv("ORT"):
# test with onnxruntime
import onnxruntime as ort
onnx_session = ort.InferenceSession(onnx_data)
onnx_output = onnx_session.run([onnx_model.graph.output[0].name], {k:v.astype(np.float16) for k,v in new_np_inputs.items()})
new_torch_out = onnx_output[0]
print("got ort outputs")
else:
# test with torch
from test.models.test_onnx import run_onnx_torch
new_torch_out = run_onnx_torch(onnx_model, new_np_inputs).numpy()
print("got torch outputs")
# if you don't have a schedule
if schedule is None:
run_onnx = get_run_onnx(onnx_model)
new_tinygrad_out = next(iter(run_onnx(new_inputs).values())).cast(dtypes.float32).numpy()
np.testing.assert_allclose(new_torch_out, new_tinygrad_out, atol=1e-4, rtol=1e-2)
print("classic self-test passed!")
return
# set inputs
for k,v in inputs.items(): v.lazydata.base.realized.copyin(new_np_inputs[k].data)
# run code (all buffers have been allocated)
GlobalCounters.reset()
for si in schedule: lower_schedule_item(si)([si.out.realized] + [x.realized for x in si.inputs], {})
new_tinygrad_out = Tensor(schedule[-1].out).numpy()
np.testing.assert_allclose(new_torch_out, new_tinygrad_out, atol=1e-4, rtol=1e-2)
print("semi-thneed self-test passed!")
if __name__ == "__main__":
onnx_data = fetch(sys.argv[1] if len(sys.argv) > 1 else OPENPILOT_MODEL).read_bytes()
# quick test for ONNX issues
#thneed_test_onnx(onnx_data, None)
#exit(0)
schedule, schedule_independent, inputs = get_schedule(onnx_data)
schedule, schedule_input = partition(schedule, lambda x: x.ast.op not in LoadOps)
print(f"{len(schedule_input)} inputs")
run_schedule(schedule_independent)
run_schedule(schedule_input)
with Context(DEBUG=max(DEBUG.value, 2), BEAM=getenv("LATEBEAM")):
image_count = sum(isinstance(si.out.dtype, ImageDType) for si in schedule)
print(f"**** running real kernels {image_count}/{len(schedule)} images ****")
GlobalCounters.reset()
run_schedule(schedule[:])
print("kernel count:", len(schedule))
assert len(schedule) <= getenv("ALLOWED_KERNEL_COUNT", 0) or getenv("ALLOWED_KERNEL_COUNT", 0) == 0, "too many kernels!"
# TODO: thneed is broken
#output_fn = sys.argv[2] if len(sys.argv) >= 3 else "/tmp/output.thneed"
#schedule_to_thneed(schedule, output_fn)
FLOAT16 = getenv("FLOAT16", 0)
if FLOAT16 == 0:
try:
test_vs_onnx(onnx_data, schedule, inputs)
except ModuleNotFoundError as e:
print(f"TEST NOT HAPPENING {e}")