Files
tinygrad/examples/compile_efficientnet.py
voidz 94bec40110 moved extras/jit.py -> tinygrad/jit.py (#599)
* moved extras/jit.py to tinygrad/jit.py

* fixed indent

* removed tinygrad.helpers.DEBUG from jit.py
2023-02-25 08:32:33 -08:00

106 lines
3.7 KiB
Python

from models.efficientnet import EfficientNet
from tinygrad.tensor import Tensor
from extra.utils import fetch
import ast
def compile_net(run, special_names):
# c header
cprog = ["#include <stdio.h>", "#include <math.h>", "#define max(x,y) ((x>y)?x:y)"]
# functions that run the net
bufs = {}
bufnum = 0
statements = []
bufs_to_save = {}
for fxn,args in run.jit_cache:
cprog.append(fxn.clprg.prg)
cargs = []
for i,arg in enumerate(args):
if i in fxn.bufs_to_delete: continue
key = id(arg.cl)
if key not in bufs:
if key in special_names:
bufs[key] = (special_names[key], len(arg.cl)//4)
else:
bufs[key] = (f"buf_{bufnum}", len(arg.cl)//4)
bufnum += 1
if i > 0: bufs_to_save[bufs[key][0]] = arg.cl # if first usage of a buffer is not an output, and it's not a special name
cargs.append(bufs[key][0])
statements.append(f"{fxn.clprg.name}({', '.join(cargs)});")
return cprog, statements, bufs, bufs_to_save
if __name__ == "__main__":
model = EfficientNet(0)
model.load_from_pretrained()
from tinygrad.jit import TinyJit
@TinyJit
def run(x): return model.forward(x).realize()
# twice to run the JIT
the_input = Tensor.randn(1,3,224,224)
the_output = run(the_input)
the_output = run(the_input)
# TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret)
special_names = {id(the_input.lazydata.realized.cl): "input", id(the_output.lazydata.realized.cl): "outputs"}
cprog, statements, bufs, bufs_to_save = compile_net(run, special_names)
# buffers (empty)
cprog += [f"float {x[0]}[{x[1]}];" for x in bufs.values() if x[0] not in bufs_to_save]
# buffers (weights)
for name,cl in bufs_to_save.items():
weight = ''.join(["\\x%02X"%x for x in bytes(memoryview(cl)[0:len(cl)//4])])
cprog.append(f"unsigned char {name}_data[] = \"{weight}\";")
cprog.append(f"float *{name} = (float *){name}_data;")
# the net
cprog += ["void net() {"] + statements + ["}"]
# image library!
cprog += ["#define STB_IMAGE_IMPLEMENTATION", fetch("https://raw.githubusercontent.com/nothings/stb/master/stb_image.h").decode('utf-8')]
# imagenet labels, move to datasets?
lbls = fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt")
lbls = ast.literal_eval(lbls.decode('utf-8'))
lbls = ['"'+lbls[i]+'"' for i in range(1000)]
cprog.append(f"char *lbls[] = {{{','.join(lbls)}}};")
cprog += ["""
int main(int argc, char* argv[]) {
int DEBUG = getenv("DEBUG") != NULL ? atoi(getenv("DEBUG")) : 0;
int X=0, Y=0, chan=0;
stbi_uc *image = (argc > 1) ? stbi_load(argv[1], &X, &Y, &chan, 3) : stbi_load_from_file(stdin, &X, &Y, &chan, 3);
assert(image != NULL);
if (DEBUG) printf("loaded image %dx%d channels %d\\n", X, Y, chan);
assert(chan == 3);
// resize to input[1,3,224,224] and rescale
for (int y = 0; y < 224; y++) {
for (int x = 0; x < 224; x++) {
// get sample position
int tx = (x/224.)*X;
int ty = (y/224.)*Y;
for (int c = 0; c < 3; c++) {
input[c*224*224 + y*224 + x] = (image[ty*X*chan + tx*chan + c] / 255.0 - 0.45) / 0.225;
}
}
}
net();
float best = -INFINITY;
int best_idx = -1;
for (int i = 0; i < 1000; i++) {
if (outputs[i] > best) {
best = outputs[i];
best_idx = i;
}
}
if (DEBUG) printf("category : %d (%s) with %f\\n", best_idx, lbls[best_idx], best);
else printf("%s\\n", lbls[best_idx]);
}"""]
# CLANG=1 GPU=1 python3 examples/compile_efficientnet.py | clang -O2 -lm -x c - -o recognize && time ./recognize docs/stable_diffusion_by_tinygrad.jpg
print('\n'.join(cprog))