Files
tinygrad/examples/tinychat/tinychat-browser/worker.js
hooved 304afe0d55 tinychat in browser, Part 3: browser app (#9276)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate app layer diff

* add .gitignore for generated files

* validate CPU/WEBGPU models in python

* prevent infinite generation if validation fails

* check if exported weight files are unique

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-03-07 15:07:33 +08:00

62 lines
2.2 KiB
JavaScript

const kernelsReady = (async () => {
// can't get browser to use updated versions except with cache-busting query string
const exports = await import(`./net_clang.js?version=${Date.now()}`);
Object.assign(self, exports);
})();
async function init(event) {
await kernelsReady;
self.model = await self.transformer();
self.addEventListener("message", loadStateDict);
self.removeEventListener("message", init);
self.postMessage("success");
}
function loadStateDict(event) {
if (event.data === "done") {
self.addEventListener("message", inference);
self.removeEventListener("message", loadStateDict);
}
else {
if (event.data.length > 1) {
// the bytes from files are set contiguously in WASM memory
const malloc_size = event.data.reduce((sum, file) => sum + file.bytes.length, 0);
const malloc_ptr = self.model.wasm._malloc(malloc_size);
let cursor = 0;
for (const file of event.data) {
self.model.wasm.HEAPU8.set(file.bytes, malloc_ptr + cursor);
for (const part of file.parts) {
if (part.target_start_pos === 0) {
// tell WASM code where the tensor is in memory
self.model.wasm._set_buf(self.transformer_name_to_id[part.key], malloc_ptr + cursor);
}
cursor += part.size;
}
file.bytes = null;
}
}
else {
// the bytes from files are not guaranteed to be set contiguously in WASM memory
const file = event.data[0];
const malloc_ptr = self.model.wasm._malloc(file.size);
self.model.wasm.HEAPU8.set(file.bytes, malloc_ptr);
for (const part of file.parts) {
if (part.target_start_pos === 0) {
self.model.wasm._set_buf(self.transformer_name_to_id[part.key], malloc_ptr + part.file_start_pos);
}
}
file.bytes = null;
}
}
self.postMessage("success");
}
function inference(event) {
const [tok, start_pos] = event.data;
const int32tok = new Int32Array([tok]);
const model_out = self.model.run(new Uint8Array(int32tok.buffer), start_pos);
const int32nextTok = new Int32Array(model_out[0].buffer);
self.postMessage(int32nextTok[0]);
}
self.addEventListener("message", init);