Files
tinygrad/test/models/test_train.py
George Hotz 3dbde178c1 mark slow tests as slow instead of as CI (#13736)
* mark slow tests as slow instead of as CI

* CI shouldn't have different behavior

* more skips / CI

* slow
2025-12-17 10:29:57 -04:00

84 lines
2.3 KiB
Python

import unittest, time
import numpy as np
from tinygrad import Device
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from tinygrad.helpers import getenv
from test.helpers import slow
from extra.training import train
from extra.models.convnext import ConvNeXt
from extra.models.efficientnet import EfficientNet
from extra.models.transformer import Transformer
from extra.models.vit import ViT
from extra.models.resnet import ResNet18
BS = getenv("BS", 2)
def train_one_step(model,X,Y):
params = get_parameters(model)
pcount = 0
for p in params:
pcount += np.prod(p.shape)
optimizer = optim.SGD(params, lr=0.001)
print("stepping %r with %.1fM params bs %d" % (type(model), pcount/1e6, BS))
st = time.time()
train(model, X, Y, optimizer, steps=1, BS=BS)
et = time.time()-st
print("done in %.2f ms" % (et*1000.))
def check_gc():
if Device.DEFAULT == "CL":
from extra.introspection import print_objects
assert print_objects() == 0
class TestTrain(unittest.TestCase):
def test_convnext(self):
model = ConvNeXt(depths=[1], dims=[16])
X = np.zeros((BS,3,224,224), dtype=np.float32)
Y = np.zeros((BS), dtype=np.int32)
train_one_step(model,X,Y)
check_gc()
@slow
def test_efficientnet(self):
model = EfficientNet(0)
X = np.zeros((BS,3,224,224), dtype=np.float32)
Y = np.zeros((BS), dtype=np.int32)
train_one_step(model,X,Y)
check_gc()
@slow
def test_vit(self):
model = ViT()
X = np.zeros((BS,3,224,224), dtype=np.float32)
Y = np.zeros((BS,), dtype=np.int32)
train_one_step(model,X,Y)
check_gc()
@slow
def test_transformer(self):
# this should be small GPT-2, but the param count is wrong
# (real ff_dim is 768*4)
model = Transformer(syms=10, maxlen=6, layers=12, embed_dim=768, num_heads=12, ff_dim=768//4)
X = np.zeros((BS,6), dtype=np.float32)
Y = np.zeros((BS,6), dtype=np.int32)
train_one_step(model,X,Y)
check_gc()
@slow
def test_resnet(self):
X = np.zeros((BS, 3, 224, 224), dtype=np.float32)
Y = np.zeros((BS), dtype=np.int32)
for resnet_v in [ResNet18]:
model = resnet_v()
model.load_from_pretrained()
train_one_step(model, X, Y)
check_gc()
def test_bert(self):
# TODO: write this
pass
if __name__ == '__main__':
unittest.main()