Files
tinygrad/test/models/test_real_world.py
George Hotz 4164d0ebbd multitensor start (#2676)
* multitensor work

* early gen fixes the tests

* atol for flaky test
2023-12-07 17:07:05 -08:00

106 lines
4.6 KiB
Python

import unittest, time
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.nn import optim
from tinygrad.nn.state import get_parameters
from tinygrad.jit import TinyJit
from tinygrad import Device, GlobalCounters
from tinygrad.helpers import CI, dtypes
from tinygrad.shape.symbolic import Variable
from test.helpers import derandomize_model
from examples.gpt2 import Transformer as GPT2Transformer, MODEL_PARAMS as GPT2_MODEL_PARAMS
from examples.hlb_cifar10 import SpeedyResNet
from examples.llama import Transformer as LLaMaTransformer, MODEL_PARAMS as LLAMA_MODEL_PARAMS
from examples.stable_diffusion import UNetModel
def helper_test(nm, gen, train, max_memory_allowed, max_kernels_allowed, all_jitted=False):
tms = []
for _ in range(4):
early_gen = [x.realize() if isinstance(x, Tensor) else x for x in gen()]
GlobalCounters.reset()
GlobalCounters.mem_used = 0
Device[Device.DEFAULT].synchronize()
st = time.perf_counter_ns()
train(*early_gen)
Device[Device.DEFAULT].synchronize()
tms.append(time.perf_counter_ns() - st)
# TODO: jit should expose this correctly with graph
kernels_used = len(train.jit_cache) if hasattr(train, "jit_cache") else None
print(f"{nm}: used {GlobalCounters.mem_used/1e9:.2f} GB and {kernels_used} kernels in {min(tms)/1e6:.2f} ms")
assert GlobalCounters.mem_used/1e9 < max_memory_allowed, f"{nm} used more than {max_memory_allowed:.2f} GB"
assert not kernels_used or kernels_used <= max_kernels_allowed, f"{nm} used more than {max_kernels_allowed} kernels"
if all_jitted:
assert kernels_used > 0 and kernels_used == GlobalCounters.kernel_count or (kernels_used == 1 and getattr(Device[Device.DEFAULT], "graph", None)), f"only {kernels_used} out of {GlobalCounters.kernel_count} were jitted"
class TestRealWorld(unittest.TestCase):
def setUp(self):
self.old_type = Tensor.default_type
np.random.seed(2002)
def tearDown(self):
Tensor.default_type = self.old_type
@unittest.skipIf(Device.DEFAULT == "LLVM", "LLVM segmentation fault")
@unittest.skipIf(CI, "too big for CI")
def test_stable_diffusion(self):
model = UNetModel()
derandomize_model(model)
@TinyJit
def test(t, t2): return model(t, 801, t2).realize()
helper_test("test_sd", lambda: (Tensor.randn(1, 4, 64, 64),Tensor.randn(1, 77, 768)), test, 18.0, 953)
@unittest.skipIf(Device.DEFAULT == "LLVM", "LLVM segmentation fault")
@unittest.skipIf(Device.DEFAULT in ["LLVM", "GPU"] and CI, "too long on CI LLVM, GPU requires cl_khr_fp1")
def test_llama(self):
Tensor.default_type = dtypes.float16
args_tiny = {"dim": 1024, "hidden_dim": 2048, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-05, "vocab_size": 1000}
model = LLaMaTransformer(**(args_tiny if CI else LLAMA_MODEL_PARAMS["1"]["7B"]["args"]))
derandomize_model(model)
@TinyJit
def test(t): return model(t, 0).realize()
# TODO: test first token vs rest properly, also memory test is broken with CacheCollector
helper_test("test_llama", lambda: (Tensor([[1,2,3,4]]),), test, 0.22 if CI else 13.5, 181 if CI else 685, all_jitted=True)
@unittest.skipIf(Device.DEFAULT in ["LLVM", "GPU"] and CI, "too long on CI LLVM, GPU requires cl_khr_fp16")
def test_gpt2(self):
Tensor.default_type = dtypes.float16
args_tiny = {"dim": 1024, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-5, "vocab_size": 1000}
model = GPT2Transformer(**(args_tiny if CI else GPT2_MODEL_PARAMS["gpt2-medium"]))
derandomize_model(model)
@TinyJit
def test(t, v): return model(t, v).realize()
helper_test("test_gpt2", lambda: (Tensor([[1,]]),Variable("pos", 1, 100).bind(1)), test, 0.21 if CI else 0.9, 164 if CI else 468, all_jitted=True)
@unittest.skipIf(Device.DEFAULT == "LLVM", "LLVM segmentation fault")
@unittest.skipIf(Device.DEFAULT in ["LLVM", "CLANG"] and CI, "too long on CI LLVM and CLANG")
def test_train_cifar(self):
# TODO: with default device
#old_default = Device.DEFAULT
#Device.DEFAULT = "FAKE"
#Device['fake'].codegen = Device[old_default].codegen
with Tensor.train():
model = SpeedyResNet(Tensor.ones((12,3,2,2)))
optimizer = optim.SGD(get_parameters(model), lr=0.01, momentum=0.8, nesterov=True, weight_decay=0.15)
BS = 32 if CI else 512
@TinyJit
def train(X):
out = model(X)
loss = out.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
helper_test("train_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), train, (1.0/48)*BS, 142 if CI else 154) # it's 154 on metal
# reset device
#Device.DEFAULT = old_default
if __name__ == '__main__':
unittest.main()