Files
tinygrad/openpilot/compile.py

93 lines
2.8 KiB
Python

#!/usr/bin/env python3
import pathlib, sys
sys.path.insert(0, str(pathlib.Path(__file__).parent.parent))
import os
import time
import io
os.environ['LAZY'] = '1'
if int(os.getenv("NOIMAGE", 0)):
pass
else:
os.environ['LAZY_OPENCL'] = '1'
DEBUGCL = int(os.getenv("DEBUGCL", 0))
import onnx
import numpy as np
import tinygrad.ops as ops
from tinygrad.llops.ops_gpu import CL
from extra.utils import fetch
from extra.onnx import get_run_onnx
from test.test_onnx import run_onnx_torch
from tinygrad.tensor import Tensor
OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/7da48ebdba5e3cf4c0b8078c934bee9a199f0280/selfdrive/modeld/models/supercombo.onnx"
#OPENPILOT_MODEL = "https://github.com/commaai/openpilot/raw/1f2f9ea9c9dc37bdea9c6e32e4cb8f88ea0a34bf/selfdrive/modeld/models/supercombo.onnx"
np.random.seed(1337)
def get_random_input_tensors():
np_inputs = {
"input_imgs": np.random.randn(*(1, 12, 128, 256)),
"big_input_imgs": np.random.randn(*(1, 12, 128, 256)),
"desire": np.zeros((1, 8)),
"traffic_convention": np.array([[1., 0.]]),
"initial_state": np.zeros((1, 512))
#"initial_state": np.zeros((1, 768))
}
np_inputs = {k:v.astype(np.float32) for k,v in np_inputs.items()}
inputs = {k:Tensor(v.astype(np.float32), requires_grad=False) for k,v in np_inputs.items()}
for _,v in inputs.items(): v.realize()
return inputs, np_inputs
if __name__ == "__main__":
ops.GRAPH = False
dat = fetch(OPENPILOT_MODEL)
onnx_model = onnx.load(io.BytesIO(dat))
run_onnx = get_run_onnx(onnx_model)
inputs, _ = get_random_input_tensors()
# initial run(s) to load weights
for _ in range(2):
st = time.monotonic()
tinygrad_out = run_onnx(inputs)['outputs']
mt = time.monotonic()
tinygrad_out.realize()
mt2 = time.monotonic()
tinygrad_out = tinygrad_out.numpy()
et = time.monotonic()
print(f"ran openpilot model in {(et-st)*1000.0:.2f} ms, waited {(mt2-mt)*1000.0:.2f} ms for realize, {(et-mt2)*1000.0:.2f} ms for GPU queue")
# real run
inputs, np_inputs = get_random_input_tensors()
tinygrad_out = run_onnx(inputs)['outputs']
CL.CACHE = []
ops.GRAPH = True
tinygrad_out.realize()
ops.GRAPH = False
print("kernel count:", len(CL.CACHE))
# real CL ish
st = time.monotonic()
for i, (prg, args) in enumerate(CL.CACHE):
if DEBUGCL: print(f"{i:3d} running {prg.name:20s} with {str(args[0]):15s} {str(args[1]):15s} count {len(args)-2:2d}")
#print(args)
prg.clprg(CL().cl_queue, *args)
mt = time.monotonic()
CL().cl_queue.finish()
et = time.monotonic()
print(f"submit in {(mt-st)*1000.0:.2f} ms, total runtime is {(et-st)*1000.0:.2f} ms")
CL.CACHE = None
tinygrad_out = tinygrad_out.numpy()
# float32
torch_out = run_onnx_torch(onnx_model, np_inputs).numpy()
print(tinygrad_out, torch_out)
np.testing.assert_allclose(torch_out, tinygrad_out, atol=1e-4, rtol=1e-2)