Files
tinygrad/models/resnet.py
2021-10-30 17:47:00 -07:00

152 lines
5.2 KiB
Python

from tinygrad.tensor import Tensor
import tinygrad.nn as nn
from extra.utils import fetch, fake_torch_load
from torch.hub import load_state_dict_from_url
import numpy as np
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def load_from_pretrained(model, url):
state_dict = load_state_dict_from_url(url, progress=True)
#state_dict = fake_torch_load(fetch(url))
layers_not_loaded = []
for k, v in state_dict.items():
par_name = ['model']
for kk in k.split('.'):
if kk.isdigit():
par_name += [f'layers[{int(kk)}]']
else:
par_name += [kk]
par_name = '.'.join(par_name)
code = f"""
if np.prod({par_name}.shape) == np.prod(v.shape):\n
if "fc.weight" in par_name:\n
{par_name}.assign(Tensor(v.detach().numpy().T))\n
else:\n
{par_name}.assign(Tensor(v.detach().numpy()))\n
else:\n
layers_not_loaded += [k]"""
exec(code)
print(f'Loaded from "{url}".')
if len(layers_not_loaded) > 0:
for l in layers_not_loaded:
print(f'- Layer {l} not loaded.')
return model
class BasicBlock:
expansion = 1
def __init__(self, in_planes, planes, stride=1):
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2D(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2D(planes)
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2D(self.expansion*planes)
)
def __call__(self, x):
out = self.bn1(self.conv1(x)).relu()
out = self.bn2(self.conv2(out))
out = out + self.downsample(x)
out = out.relu()
return out
class Bottleneck:
expansion = 4
def __init__(self, in_planes, planes, stride=1):
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2D(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=stride, bias=False)
self.bn2 = nn.BatchNorm2D(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2D(self.expansion*planes)
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2D(self.expansion*planes)
)
def __call__(self, x):
out = self.bn1(self.conv1(x)).relu()
out = self.bn2(self.conv2(out)).relu()
out = self.bn3(self.conv3(out))
out = out + self.downsample(x)
out = out.relu()
return out
class ResNet:
def __init__(self, block, num_blocks, num_classes=10):
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, bias=False, padding=3)
self.bn1 = nn.BatchNorm2D(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.bn1(self.conv1(x)).relu()
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.mean(3).mean(2)
out = self.fc(out).logsoftmax()
return out
def __call__(self, x):
return self.forward(x)
def ResNet18(num_classes, pretrained=False):
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes)
if pretrained:
model = load_from_pretrained(model, model_urls['resnet18'])
return model
def ResNet34(num_classes, pretrained=False):
model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
if pretrained:
model = load_from_pretrained(model, model_urls['resnet34'])
return model
def ResNet50(num_classes, pretrained=False):
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes)
if pretrained:
model = load_from_pretrained(model, model_urls['resnet50'])
return model
def ResNet101(num_classes, pretrained=False):
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
if pretrained:
model = load_from_pretrained(model, model_urls['resnet101'])
return model
def ResNet152(num_classes, pretrained=False):
model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes)
if pretrained:
model = load_from_pretrained(model, model_urls['resnet152'])
return model