Files
tinygrad/examples/webgpu/compile_webgpu.py
Diogo a9a1df785f Webgpu support (#1077)
* initial commit

* 81 passing

* 105 passing tests

* 148 passing

* CI tests

* install dep on ci

* try opencl pkgs

* try using vulkan

* down to only 6 failing

* refactor

* cleaning up

* another test skipped due to buffer limit

* linter

* segfault

* indent fix

* another segfault found

* small touchups

* Fix max and maxpool tests

* Add constant folding

* Add javascript export script

* better asserts in codegen

* manual upcasting

* reverted token type change

* skip safetensor test due to unsupported type

* FIx efficientnet and all other model tests

* Remove np copy

* fixed indent and missing import

* manually destroy the buffer

* revert back to length

* linter errors

* removed extra val

* skip broken tests

* skipping more tests

* Make the page pretty

* Save model weights as safetensor

* Fix imagenet to c test

* Fix second imagenet to c bug

* Async and paralel kernel compilation

* workgroup support

* reversed local size

* fixed non local bug

* correct local groups

* ci experiment

* removed typo

* Fix define local by using shared memory

* Refactor

* try running on mac

* match metal tests

* add more workers

* scope down tests

* trying windows runner

* fixed windows env

* see how many it can do

* merged master

* refactor

* missed refactor

* increase test suite coverage

* missing import

* whitespace in test_efficientnet.py

* getting there

* fixed reset

* fixed bufs

* switched to cstyle

* cleanup

* min/max rename

* one more linter issue

* fixed demo

* linter

* testing ci chrome

* add unsafe webgpu arg

* add build step

* remove WEBGPU from cmd line

* use module

* try forcing directx

* trying forced metal backend

* temp disable conv2d for CI

* disable conv_trasnpose2d

---------

Co-authored-by: 0x4d - Martin Loretz <20306567+martinloretzzz@users.noreply.github.com>
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2023-07-12 12:52:06 -07:00

88 lines
4.2 KiB
Python

from os import path
from examples.compile_efficientnet import compile_net, jit_model
from models.efficientnet import EfficientNet
from tinygrad.state import get_state_dict, safe_save
from tinygrad.tensor import Tensor
if __name__ == "__main__":
model = EfficientNet(0)
model.load_from_pretrained()
run, special_names = jit_model(model, Tensor.randn(1,3,224,224))
functions, statements, bufs, _bufs_to_save = compile_net(run, special_names)
state = get_state_dict(model)
weights = {id(x.lazydata.realized): name for name, x in state.items()}
safe_save(state, path.join(path.dirname(__file__), "net.safetensors"))
kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()])
kernel_names = ', '.join([name for (name, _args, _global_size) in statements])
kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, piplines[{i}], [{', '.join(args)}], {global_size});" for i, (_name, args, global_size) in enumerate(statements) ])
bufs = '\n '.join([f"const {buf[0]} = " + (f"createEmptyBuf(device, {buf[1]});" if buf[2] not in weights else f"createWeightBuf(device, {buf[1]}, getTensorBuffer(safetensor, metadata['{weights[buf[2]]}']))") + ";" for buf in bufs.values()])
prg = f"""const getTensorMetadata = (safetensorBuffer) => {{
const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true));
const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength)));
return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}]));
}};
const getTensorBuffer = (safetensorBuffer, tensorMetadata) => {{
return safetensorBuffer.subarray(...tensorMetadata.data_offsets);
}}
const createEmptyBuf = (device, size) => {{
return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }});
}};
const createWeightBuf = (device, size, data) => {{
const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }});
new Uint8Array(buf.getMappedRange()).set(data);
buf.unmap();
return buf;
}};
const addComputePass = (device, commandEncoder, pipeline, bufs, workgroup) => {{
const bindGroup = device.createBindGroup({{layout: pipeline.getBindGroupLayout(0), entries: bufs.map((buffer, index) => ({{ binding: index, resource: {{ buffer }} }}))}});
const passEncoder = commandEncoder.beginComputePass();
passEncoder.setPipeline(pipeline);
passEncoder.setBindGroup(0, bindGroup);
passEncoder.dispatchWorkgroups(...workgroup);
passEncoder.end();
}};
{kernel_code}
const setupNet = async (device, safetensor) => {{
const metadata = getTensorMetadata(safetensor);
{bufs}
const gpuWriteBuffer = device.createBuffer({{size:input.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});
const gpuReadBuffer = device.createBuffer({{ size: outputs.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});
const kernels = [{kernel_names}];
const piplines = await Promise.all(kernels.map(name => device.createComputePipelineAsync({{layout: "auto", compute: {{ module: device.createShaderModule({{ code: name }}), entryPoint: "main" }}}})));
return async (data) => {{
await gpuWriteBuffer.mapAsync(GPUMapMode.WRITE);
new Float32Array(gpuWriteBuffer.getMappedRange()).set(data);
gpuWriteBuffer.unmap();
const commandEncoder = device.createCommandEncoder();
commandEncoder.copyBufferToBuffer(gpuWriteBuffer, 0, input, 0, gpuWriteBuffer.size);
{kernel_calls}
commandEncoder.copyBufferToBuffer(outputs, 0, gpuReadBuffer, 0, outputs.size);
const gpuCommands = commandEncoder.finish();
device.queue.submit([gpuCommands]);
await gpuReadBuffer.mapAsync(GPUMapMode.READ);
const resultBuffer = new Float32Array(gpuReadBuffer.size);
resultBuffer.set(new Float32Array(gpuReadBuffer.getMappedRange()));
gpuReadBuffer.unmap();
return resultBuffer;
}}
}}
"""
with open(path.join(path.dirname(__file__), "net.js"), "w") as text_file:
text_file.write(prg)