Files
tinygrad/examples/benchmark_train_efficientnet.py
Jacky Lee 799b3f185a Refactor getenv into helpers (#508)
* Refactor getenv into helpers

* Remove unused os

* Fix default value

* Fix more defaults for CI

* Fix bracket

* Revert changes to openpilot/compile.py

* Use getenv from helpers when possible
2023-01-31 15:09:09 -08:00

78 lines
2.4 KiB
Python

#!/usr/bin/env python3
import time
from tqdm import trange
from models.efficientnet import EfficientNet
import tinygrad.nn.optim as optim
from tinygrad.tensor import Tensor
from tinygrad.llops.ops_gpu import CL
from tinygrad.ops import GlobalCounters
from tinygrad.helpers import getenv
import gc
def tensors_allocated():
return sum([isinstance(x, Tensor) for x in gc.get_objects()])
NUM = getenv("NUM", 2)
BS = getenv("BS", 8)
CNT = getenv("CNT", 10)
BACKWARD = getenv("BACKWARD", 0)
TRAINING = getenv("TRAINING", 1)
ADAM = getenv("ADAM", 0)
CLCACHE = getenv("CLCACHE", 0)
if __name__ == "__main__":
print(f"NUM:{NUM} BS:{BS} CNT:{CNT}")
model = EfficientNet(NUM, classes=1000, has_se=False, track_running_stats=False)
parameters = optim.get_parameters(model)
for p in parameters: p.realize()
if ADAM: optimizer = optim.Adam(parameters, lr=0.001)
else: optimizer = optim.SGD(parameters, lr=0.001)
Tensor.training = TRAINING
Tensor.no_grad = not BACKWARD
for i in trange(CNT):
CL.time_sum = 0
GlobalCounters.global_ops = 0
cpy = time.monotonic()
x_train = Tensor.randn(BS, 3, 224, 224, requires_grad=False).realize()
y_train = Tensor.randn(BS, 1000, requires_grad=False).realize()
if i < 3 or not CLCACHE:
st = time.monotonic()
out = model.forward(x_train)
loss = out.logsoftmax().mul(y_train).mean()
if ADAM: optimizer.t = 0 # TODO: fixing this requires optional constant folding
if i == 2 and CLCACHE: CL.CACHE = []
if BACKWARD:
optimizer.zero_grad()
loss.backward()
optimizer.step()
mt = time.monotonic()
loss.realize()
for p in parameters:
p.realize()
et = time.monotonic()
ops = GlobalCounters.global_ops
else:
st = mt = time.monotonic()
ops = 0
for prg, args in cl_cache:
prg.clprg(CL().cl_queue, *args)
ops += prg.op_estimate
et = time.monotonic()
if i == 2 and CLCACHE:
cl_cache = CL.CACHE
CL.CACHE = None
mem_used = CL.mem_used
loss_cpu = loss.detach().cpu().data[0]
cl = time.monotonic()
print(f"{(st-cpy)*1000.0:7.2f} ms cpy, {(cl-st)*1000.0:7.2f} ms run, {(mt-st)*1000.0:7.2f} ms build, {(et-mt)*1000.0:7.2f} ms realize, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {tensors_allocated():4d} tensors, {mem_used/1e9:.2f} GB used, {ops*1e-9/(cl-st):9.2f} GFLOPS")