Files
tinygrad/models/transformer.py
2021-11-30 00:25:39 -05:00

100 lines
4.1 KiB
Python

import numpy as np
from tinygrad.tensor import Tensor
class TransformerBlock:
def __init__(self, embed_dim, num_heads, ff_dim, prenorm=False):
# Multi-Head Attention
self.num_heads = num_heads
self.head_size = embed_dim // num_heads
assert self.head_size * self.num_heads == embed_dim
self.prenorm = prenorm
# added bias
self.query_dense = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim))
self.key_dense = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim))
self.value_dense = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim))
self.final = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim))
self.ff1 = (Tensor.uniform(embed_dim, ff_dim), Tensor.zeros(ff_dim))
self.ff2 = (Tensor.uniform(ff_dim, embed_dim), Tensor.zeros(embed_dim))
self.ln1 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim))
self.ln2 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim))
def attn(self, x):
embed_dim = self.num_heads * self.head_size
query, key, value = [x.linear(y) \
.reshape(shape=(x.shape[0], -1, self.num_heads, self.head_size)) \
for y in [self.query_dense, self.key_dense, self.value_dense]]
query = query.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size)
key = key.transpose(order=(0,2,3,1)) # (bs, num_heads, head_size, T)
value = value.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size)
score = query.dot(key) * (1 / np.sqrt(self.head_size))
weights = score.softmax() # (bs, num_heads, T, T)
attention = weights.dot(value).transpose(order=(0,2,1,3)) # (bs, T, num_heads, head_size)
return attention.reshape(shape=(x.shape[0], -1, embed_dim)).linear(self.final)
def __call__(self, x):
if self.prenorm:
x = x + self.attn(x.layernorm().linear(self.ln1)).dropout(0.1)
x = x + x.layernorm().linear(self.ln2).linear(self.ff1).gelu().linear(self.ff2).dropout(0.1)
else:
x = x + self.attn(x).dropout(0.1)
x = x.layernorm().linear(self.ln1)
x = x + x.linear(self.ff1).relu().linear(self.ff2).dropout(0.1)
x = x.layernorm().linear(self.ln2)
return x
class Transformer:
# L = layers, H = embed_dim, A = num_heads
def __init__(self, syms, maxlen, layers, embed_dim, num_heads, ff_dim):
self.maxlen, self.syms = maxlen, syms
self.embed = Tensor.uniform(maxlen+syms, embed_dim, requires_grad=False)
self.tbs = []
for i in range(layers):
self.tbs.append(TransformerBlock(embed_dim, num_heads, ff_dim))
self.final = Tensor.uniform(embed_dim, syms)
def forward(self, x):
bs = x.shape[0]
xnp = x.cpu().data.astype(np.int32)
onehot = np.zeros((bs, x.shape[1], self.maxlen+self.syms), dtype=np.float32)
for i in range(x.shape[1]):
onehot[range(bs), i, i] = 1
onehot[range(bs), i, self.maxlen + xnp[:, i]] = 1
onehot = onehot.reshape(bs*x.shape[1], self.maxlen+self.syms)
x = Tensor(onehot, device=x.device).dot(self.embed).reshape(shape=(bs, x.shape[1], -1))
x = x.sequential(self.tbs)
x = x.reshape(shape=(-1, x.shape[-1])).dot(self.final).logsoftmax()
return x.reshape(shape=(bs, -1, x.shape[-1]))
class ViT:
def __init__(self, embed_dim=192):
self.conv_weight = Tensor.uniform(embed_dim, 3, 16, 16)
self.conv_bias = Tensor.zeros(embed_dim)
self.cls_token = Tensor.ones(1, 1, embed_dim)
self.tbs = [TransformerBlock(embed_dim=embed_dim, num_heads=3, ff_dim=768, prenorm=True) for i in range(12)]
self.pos_embed = Tensor.ones(1, 197, embed_dim)
self.head = (Tensor.uniform(embed_dim, 1000), Tensor.zeros(1000))
self.norm = (Tensor.uniform(embed_dim), Tensor.zeros(embed_dim))
def patch_embed(self, x):
x = x.conv2d(self.conv_weight, stride=16)
x = x.add(self.conv_bias.reshape(shape=(1,-1,1,1)))
x = x.reshape(shape=(x.shape[0], x.shape[1], -1)).transpose(order=(0,2,1))
return x
def forward(self, x):
pe = self.patch_embed(x)
x = self.cls_token.add(Tensor.zeros(pe.shape[0],1,1)).cat(pe, dim=1) + self.pos_embed
x = x.sequential(self.tbs)
x = x.layernorm().linear(self.norm)
return x[:, 0].linear(self.head)