Files
tinygrad/CLAUDE.md
George Hotz 55845f7de7 schedule: cache unbinds for consistent cache keys (#13664)
* schedule: cache unbinds for consistent cache keys

strip BIND values before computing cache key so different bound values
(e.g. KV cache positions) hit the same schedule cache entry.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* spec: allow single-src BIND for schedule cache key normalization

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* docs: add lessons learned to CLAUDE.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* more claude.md

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-12 17:27:42 -05:00

5.9 KiB

Claude Code Guide for tinygrad

Architecture Overview

tinygrad compiles tensor operations into optimized kernels. The pipeline:

  1. Tensor (tensor.py) - User-facing API, creates UOp graph
  2. UOp (uop/ops.py) - Unified IR for all operations (both tensor and kernel level)
  3. Schedule (engine/schedule.py, schedule/) - Converts tensor UOps to kernel UOps
  4. Codegen (codegen/) - Converts kernel UOps to device code
  5. Runtime (runtime/) - Device-specific execution

Key Concepts

UOp (Universal Operation)

Everything is a UOp - tensors, operations, buffers, kernels. Key properties:

  • op: The operation type (Ops enum)
  • dtype: Data type
  • src: Tuple of source UOps
  • arg: Operation-specific argument
  • tag: Optional tag for graph transformations

UOps are immutable and cached - creating the same UOp twice returns the same object (ucache).

PatternMatcher

Used extensively for graph transformations:

pm = PatternMatcher([
  (UPat(Ops.ADD, src=(UPat.cvar("x"), UPat.cvar("x"))), lambda x: x * 2),
])
result = graph_rewrite(uop, pm)

Schedule Cache

Schedules are cached by graph structure. BIND nodes (variables with bound values) are unbound before cache key computation so different values hit the same cache.

Directory Structure

tinygrad/
├── tensor.py          # Tensor class, user API
├── device.py          # Buffer, device management
├── dtype.py           # Data types
├── helpers.py         # Utilities, environment vars
├── uop/
│   ├── ops.py         # UOp class, Ops enum, PatternMatcher
│   ├── spec.py        # UOp type verification
│   └── symbolic.py    # Symbolic math simplification
├── engine/
│   ├── schedule.py    # Schedule creation, caching
│   ├── realize.py     # Tensor realization
│   ├── jit.py         # JIT compilation
│   └── memory.py      # Memory planning
├── schedule/
│   ├── rangeify.py    # Convert movements to ranges
│   └── indexing.py    # Index calculations
├── codegen/
│   ├── kernel.py      # Kernel optimization
│   └── uopgraph.py    # UOp graph transformations
├── renderer/          # Code generation (CUDA, Metal, etc.)
└── runtime/           # Device backends

Testing

# Run specific test
python -m pytest test/unit/test_schedule_cache.py -xvs

# Run with timeout
python -m pytest test/test_symbolic_ops.py -x --timeout=60

# Debug with print
DEBUG=2 python -m pytest test/test_schedule.py::test_name -xvs

# Visualize UOp graphs
VIZ=1 python -c "from tinygrad import Tensor; Tensor.ones(10).sum().realize()"

Common Environment Variables

  • DEBUG=1-4 - Increasing verbosity
  • VIZ=1 - Enable graph visualization
  • SPEC=1 - Enable UOp spec verification
  • NOOPT=1 - Disable optimizations
  • DEVICE=CPU/CUDA/AMD/METAL - Set default device

Debugging Tips

  1. Print UOp graphs: print(tensor.uop) or print(tensor.uop.sink())
  2. Check schedule: tensor.schedule() returns list of ScheduleItems
  3. Trace graph rewrites: Use VIZ=1 or add print in PatternMatcher callbacks
  4. Find UOps by type: [u for u in uop.toposort() if u.op is Ops.SOMETHING]

Workflow Rules

  • NEVER commit without explicit user approval - always show the diff and wait for approval
  • Run tests before proposing commits
  • Test with SPEC=2 when modifying UOp-related code

Style Notes

  • 2-space indentation, 150 char line limit
  • PatternMatchers should be defined at module level (slow to construct)
  • Prefer graph_rewrite over manual graph traversal
  • UOp methods like .replace() preserve tags unless explicitly changed
  • Use .rtag(value) to add tags to UOps

Lessons Learned

UOp ucache Behavior

UOps are cached by their contents - creating a UOp with identical (op, dtype, src, arg) returns the same object. This means:

  • uop.replace(tag=None) on a tagged UOp returns the original untagged UOp if it exists in cache
  • Two UOps with same structure are identical (is comparison works)

Spec Validation

When adding new UOp patterns, update tinygrad/uop/spec.py. Test with:

SPEC=2 python3 test/unit/test_something.py

Spec issues appear as RuntimeError: SPEC ISSUE None: UOp(...).

Schedule Cache Key Normalization

The schedule cache strips values from BIND nodes so different bound values (e.g., KV cache positions) hit the same cache entry:

  • pm_pre_sched_cache: BIND(DEFINE_VAR, CONST) → BIND(DEFINE_VAR) for cache key
  • pm_post_sched_cache: restores original BIND from context
  • When accessing bind.src[1], check len(bind.src) > 1 first (might be stripped)
  • Extract var_vals from input_buffers dict after graph_rewrite (avoids extra toposort)

Avoiding Extra Work

  • Use ctx dict from graph_rewrite to collect info during traversal instead of separate toposort
  • Only extract var_vals when schedule is non-empty (no kernels = no vars needed)
  • PatternMatchers are slow to construct - define at module level, not in functions

Testing LLM Changes

# Quick smoke test
echo "Hello" | DEBUG=1 python tinygrad/apps/llm.py --model "llama3.2:1b"

# Check cache hits (should see "cache hit" after warmup)
echo "Hello world" | DEBUG=1 python tinygrad/apps/llm.py --model "llama3.2:1b" 2>&1 | grep cache

# Test with beam search
echo "Hello" | BEAM=2 python tinygrad/apps/llm.py --model "llama3.2:1b"

Common Patterns

Graph Transformation

def my_transform(ctx, x):
  # Return new UOp or None to skip
  return x.replace(arg=new_arg)

pm = PatternMatcher([
  (UPat(Ops.SOMETHING, name="x"), my_transform),
])
result = graph_rewrite(input_uop, pm, ctx={})

Finding Variables

# Get all variables in a UOp graph
variables = uop.variables()

# Get bound variable values
var, val = bind_uop.unbind()

Shape Handling

# Shapes can be symbolic (contain UOps)
shape = tensor.shape  # tuple[sint, ...] where sint = int | UOp