mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-25 23:08:06 -05:00
171 lines
8.9 KiB
Python
171 lines
8.9 KiB
Python
from __future__ import annotations
|
|
from typing import Union, Tuple, Any, List, Dict, Callable
|
|
import functools, hashlib, math, operator, ctypes, struct
|
|
from enum import Enum, auto
|
|
from dataclasses import dataclass
|
|
from tinygrad.helpers import prod, dedup, pretty_print
|
|
from tinygrad.dtype import dtypes, DType, ConstType
|
|
from tinygrad.shape.symbolic import Variable, sint
|
|
from tinygrad.shape.shapetracker import ShapeTracker
|
|
|
|
# these are the llops your accelerator must implement, along with toCpu
|
|
# the Enum class doesn't work with mypy, this is static. sorry it's ugly
|
|
# NOTE: MOD, CMPLT don't have to be implemented on vectors, just scalars
|
|
# NOTE: many GPUs don't have DIV, but UnaryOps.RECIP doesn't work for integer division
|
|
class UnaryOps(Enum):
|
|
"""A -> A (elementwise)"""
|
|
EXP2 = auto(); LOG2 = auto(); CAST = auto(); BITCAST = auto(); SIN = auto(); SQRT = auto(); NEG = auto(); RECIP = auto() # noqa: E702
|
|
class BinaryOps(Enum):
|
|
"""A + A -> A (elementwise)"""
|
|
ADD = auto(); MUL = auto(); IDIV = auto(); MAX = auto(); MOD = auto(); CMPLT = auto(); CMPNE = auto(); XOR = auto() # noqa: E702
|
|
SHL = auto(); SHR = auto(); OR = auto(); AND = auto(); THREEFRY = auto() # noqa: E702
|
|
class TernaryOps(Enum):
|
|
"""A + A + A -> A (elementwise)"""
|
|
WHERE = auto(); MULACC = auto() # noqa: E702
|
|
class ReduceOps(Enum):
|
|
"""A -> B (reduce)"""
|
|
SUM = auto(); MAX = auto(); WMMA = auto() # noqa: E702
|
|
class BufferOps(Enum): LOAD = auto(); CONST = auto(); STORE = auto() # noqa: E702
|
|
class MetaOps(Enum):
|
|
EMPTY = auto(); CONST = auto(); COPY = auto(); CONTIGUOUS = auto(); CUSTOM = auto(); ASSIGN = auto(); VIEW = auto(); KERNEL = auto() # noqa: E702
|
|
Op = Union[UnaryOps, BinaryOps, ReduceOps, MetaOps, TernaryOps, BufferOps]
|
|
|
|
# do not preserve f(0) = 0
|
|
UNSAFE_PAD_OPS = {UnaryOps.RECIP, UnaryOps.LOG2, UnaryOps.EXP2, BinaryOps.IDIV}
|
|
|
|
@dataclass(frozen=True)
|
|
class MemBuffer:
|
|
idx: int
|
|
dtype: DType
|
|
st: ShapeTracker
|
|
|
|
@dataclass(frozen=True)
|
|
class ConstBuffer:
|
|
val: ConstType | Variable
|
|
dtype: DType
|
|
st: ShapeTracker
|
|
|
|
@dataclass(frozen=True)
|
|
class KernelInfo:
|
|
local_dims: int = 0 # number of local dimensions (this is remapping RANGE to SPECIAL)
|
|
upcasted: int = 0 # count that are upcasted (this is remapping RANGE to EXPAND)
|
|
dont_use_locals: bool = False # don't use local indexing
|
|
|
|
@dataclass(frozen=True, eq=False)
|
|
class LazyOp:
|
|
op: Op
|
|
src: Tuple[LazyOp, ...] = ()
|
|
arg: Any = None
|
|
def cached_compare(self, x, context):
|
|
if id(self) == id(x): return True
|
|
if self.op != x.op or self.arg != x.arg or len(self.src) != len(x.src): return False
|
|
if (key := (id(self), id(x))) in context: return context[key]
|
|
ret = context[key] = all(a.cached_compare(b, context) for a,b in zip(self.src, x.src))
|
|
return ret
|
|
def __eq__(self, x): return self.cached_compare(x, context={})
|
|
def __repr__(self:LazyOp): return pretty_print(self, lambda x: f'LazyOp({x.op}, arg={x.arg}, src=(%s))')
|
|
@functools.cached_property
|
|
def dtype(self) -> DType:
|
|
if self.op in BufferOps: return self.arg.dtype
|
|
if self.op is ReduceOps.WMMA: return self.arg[3] # WMMA can change the type
|
|
if self.op in [UnaryOps.CAST, UnaryOps.BITCAST]: return self.arg
|
|
return dtypes.bool if self.op in {BinaryOps.CMPLT, BinaryOps.CMPNE} else self.src[-1].dtype
|
|
@functools.cached_property
|
|
def full_shape(self) -> Tuple[sint, ...]:
|
|
if len(self.src) == 0 and self.op in BufferOps: return self.arg.st.shape
|
|
return tuple(max(x) for x in zip(*[x.full_shape for x in self.src]))
|
|
@functools.cached_property
|
|
def key(self) -> bytes:
|
|
return hashlib.sha256(functools.reduce(lambda x,y: x+y, [s.key for s in self.src], str((self.op, self.arg)).encode())).digest()
|
|
@functools.cached_property
|
|
def hash(self): return hash((self.op, self.src, self.arg))
|
|
def __hash__(self): return self.hash
|
|
@functools.cached_property
|
|
def lazyops(self) -> List[LazyOp]: return dedup([self] + [item for x in self.src for item in x.lazyops])
|
|
def vars(self) -> List[Variable]:
|
|
extract_vars = [x.arg.st.vars() for x in self.lazyops if x.op in BufferOps]
|
|
const_vars = [x.arg.val for x in self.lazyops if x.op is BufferOps.CONST and isinstance(x.arg.val, Variable)]
|
|
return sorted(set.union(*extract_vars, set(const_vars)), key=lambda v: v.expr)
|
|
|
|
# TODO: support non-lazyop
|
|
def __add__(self, x:LazyOp): return LazyOp(BinaryOps.ADD, (self, x))
|
|
def __sub__(self, x:LazyOp): return LazyOp(BinaryOps.ADD, (self, -x))
|
|
def __mul__(self, x:LazyOp): return LazyOp(BinaryOps.MUL, (self, x))
|
|
def ne(self, x:LazyOp): return LazyOp(BinaryOps.CMPNE, (self, x))
|
|
def eq(self, x:LazyOp): return -self.ne(x)
|
|
def __neg__(self): return LazyOp(UnaryOps.NEG, (self,))
|
|
@staticmethod
|
|
def const(val, dtype:DType, shape:Tuple[sint, ...]):
|
|
return LazyOp(BufferOps.CONST, (), ConstBuffer(val, dtype, ShapeTracker.from_shape(()).reshape((1,)*len(shape)).expand(shape)))
|
|
|
|
# **************** ops in python ****************
|
|
|
|
def hook_overflow(dv, fxn):
|
|
def wfxn(*args):
|
|
try: return fxn(*args)
|
|
except OverflowError: return dv
|
|
return wfxn
|
|
|
|
python_alu: Dict[Op, Callable] = {
|
|
UnaryOps.LOG2: lambda x: math.log2(x) if x > 0 else -math.inf if x == 0 else math.nan, UnaryOps.EXP2: hook_overflow(math.inf, lambda x: 2**x),
|
|
UnaryOps.SQRT: lambda x: math.sqrt(x) if x >= 0 else math.nan, UnaryOps.RECIP: lambda x: 1/x if x != 0 else math.copysign(math.inf, x),
|
|
UnaryOps.SIN: lambda x: math.sin(x) if not math.isinf(x) else math.nan, UnaryOps.NEG: lambda x: (not x) if isinstance(x, bool) else -x,
|
|
BinaryOps.SHR: operator.rshift, BinaryOps.SHL: operator.lshift, BinaryOps.MUL: operator.mul, BinaryOps.ADD: operator.add,
|
|
BinaryOps.XOR: operator.xor, BinaryOps.MAX: max, BinaryOps.CMPNE: operator.ne, BinaryOps.CMPLT: operator.lt,
|
|
BinaryOps.OR: operator.or_, BinaryOps.AND: operator.and_,
|
|
BinaryOps.MOD: lambda x,y: abs(int(x))%abs(int(y))*(1,-1)[x<0], BinaryOps.IDIV: lambda x,y: abs(x)//abs(y)*(1,-1)[x*y<0] if y != 0 else x*math.inf,
|
|
TernaryOps.MULACC: lambda x,y,z: (x*y)+z, TernaryOps.WHERE: lambda x,y,z: y if x else z}
|
|
|
|
def truncate_fp16(x):
|
|
try:
|
|
x = float(x)
|
|
struct.pack("@e", x)
|
|
return x
|
|
except OverflowError: return math.copysign(math.inf, x)
|
|
|
|
truncate: Dict[DType, Callable] = {dtypes.bool: bool,
|
|
# TODO: bfloat16
|
|
dtypes.float16: truncate_fp16, dtypes.float32: lambda x: ctypes.c_float(x).value, dtypes.float64: lambda x: ctypes.c_double(x).value,
|
|
dtypes.uint8: lambda x: ctypes.c_uint8(x).value, dtypes.uint16: lambda x: ctypes.c_uint16(x).value,
|
|
dtypes.uint32: lambda x: ctypes.c_uint32(x).value, dtypes.uint64: lambda x: ctypes.c_uint64(x).value,
|
|
dtypes.int8: lambda x: ctypes.c_int8(x).value, dtypes.int16: lambda x: ctypes.c_int16(x).value, dtypes.int32: lambda x: ctypes.c_int32(x).value \
|
|
if isinstance(x,int) else x, dtypes.int64: lambda x: ctypes.c_int64(x).value}
|
|
|
|
def exec_alu(op:Op, dtype:DType, operands): return truncate.get(dtype, lambda x: x)(python_alu[op](*operands))
|
|
|
|
def reduce_st(st:ShapeTracker, axis:Tuple[int, ...]) -> Tuple[sint, ...]: return tuple(1 if i in axis else s for i,s in enumerate(st.shape))
|
|
|
|
# the living definition of LazyOps
|
|
def verify_lazyop(ast:LazyOp) -> Dict[LazyOp, ShapeTracker]:
|
|
assert ast.op is MetaOps.KERNEL, "must be SINK"
|
|
sts: Dict[LazyOp, ShapeTracker] = {}
|
|
def assert_valid(op:LazyOp, st:ShapeTracker):
|
|
if op in sts: return
|
|
# restore globals from the two stage reduce
|
|
if op.op is BufferOps.LOAD and op.arg.idx < 0:
|
|
assert_valid(local_reduce:=op.src[0].src[0], op.arg.st)
|
|
return sts.setdefault(op, sts[local_reduce])
|
|
for x in op.src: assert_valid(x, st)
|
|
# only reduceop is allowed to change shape, limited to turning n to 1
|
|
if op.op in ReduceOps:
|
|
axis = op.arg[-1] if op.op is ReduceOps.WMMA else op.arg
|
|
assert isinstance(axis, tuple) and all(isinstance(i, int) for i in axis), f"reduceop must have axis {op.arg}"
|
|
st = ShapeTracker.from_shape(reduce_st(sts[op.src[0]], axis))
|
|
else:
|
|
# movementops are pushed to the edges with LOAD
|
|
# elementwise inherits shape
|
|
st = op.arg.st if op.op in BufferOps else sts[op.src[0]]
|
|
for x in op.src:
|
|
if sts[x].shape != st.shape:
|
|
if prod(sts[x].shape) == prod(st.shape): raise AssertionError(f"found implicit reshape {x.op} {op.op} {sts[x].shape} != {st.shape}")
|
|
raise AssertionError(f"found implicit expand {x.op} {sts[x].shape} != {op.op} {st.shape} {prod(sts[x].shape)} != {prod(st.shape)}")
|
|
sts[op] = st
|
|
for i, out in enumerate(ast.src):
|
|
assert out.arg.idx == i, f"unexpected output buffer idx {out.arg.idx} != {i}"
|
|
assert out.op is BufferOps.STORE, f"kernels must have stores as the output, got {out.op}"
|
|
assert out.arg.st.size == ast.src[-1].arg.st.size, f"outputs must have the same size, got {out.arg.st.size}"
|
|
assert_valid(out, out.arg.st)
|
|
shape_dims = [sorted(dedup(dims)) for dims in zip(*[x.shape for x in sts.values()])]
|
|
assert all(len(x) == 1 or (len(x) == 2 and x[0] == 1) for x in shape_dims), f"shapes must have either 1 or n in each dimension, {shape_dims}"
|
|
return sts
|