Files
tinygrad/examples/llama.py
Oleg Rybalko 5e87083783 Whisper + LLAMA + VITS (#2332)
* feat: working voice 2 text using whisper

* feat: added llama generation

* feat: vits init

* feat: more accurate voice conversion

* feat: support for tts and working pipeline for the first pass

* fix: linter checks

* refactored vits initialization and inference, added mmts-tts support

* fixed process sync and now we can have an infinite conversation

* reuse output stream to remove overhead of creating a new one each time

* added pre-prompt configuration with yaml files

* adjusted code to merge PR which changed whisper

* optimized whisper, now it's blazing fast and also reduced number of lines

* added better debug printing

* use jitted encode function for whisper, added timings and removed response delim to save speed on generating those tokens

* fixed hf convert and now it's working with tinyllama

* added tinyllama config

* refactored code and made it work with all llama models

* prettier order

* prettier order

* fixed suffix for tinyllama and refactored convert_from_hf

* added missing parameters

* fixed stream release and added missing params

* jitted dp and encoder

* jitted flow forward

* removed re-init of espeak on each call to save up time

* jitted generator forward for blazing fast tts

* added contextmanager for displaying a chat log

* removed whitespace for pylint

* updated code to support latest fetch func

* wait for llama eos token and pass params from cli to llama

* listen for not fixed amount of time

* refactored code a bit

* removed thresholding and now the output streams directly to whisper

* tokenize llama output for vits batch size to work and stream each sentence to a speaker

* changed speaker

* whisper is now printing on the same line

* don't trigger llama on whisper output in parens

* added tinyllama chat model

* adjusted code to work with tinyllama chat model

* removed unused cli arg

* autofetch tokenizer and tinyllama model. add 3 chat tokens to the tokenizer

* fixed issue with long sentences by chunking them

* support for multiline llama output

* prettified log output

* adjusted sentence length

* remove quote from response to avoid funny tts

* fixed prompts

* added missing parameter
2023-12-02 15:03:46 -08:00

432 lines
18 KiB
Python
Executable File

#!/usr/bin/env python3
# pip3 install sentencepiece
#import typeguard.importhook
#typeguard.importhook.install_import_hook('tinygrad')
from pathlib import Path
import sys, argparse, json
import numpy as np
np.set_printoptions(linewidth=200)
from tinygrad.helpers import Timing, Profiling, getenv, DEBUG, dtypes
from tinygrad import Device
from tinygrad.tensor import Tensor
from tinygrad.nn.state import safe_load, torch_load, load_state_dict, get_parameters
from tinygrad.helpers import GlobalCounters
from extra.models.llama import Transformer, convert_from_huggingface
from sentencepiece import SentencePieceProcessor
MAX_CONTEXT = getenv("MAX_CONTEXT", 4096)
# calculating params:
# traditionally, the MLP in the transformer architecture has hidden_dim = dim*4 [arxiv/1706.03762, 3.3]
# however, Llama uses SwiGLU. in order to preserve param count to original transformer arch, hidden_dim must be = 2/3 * (dim*4) [arxiv/2002.05202]
# for models using MQA (n_kv_heads != n_heads), preserving param count means hidden dim must be further multiplied by 1.3 [arxiv/2307.09288, A.2.1]
MODEL_PARAMS = {
"1": {
"7B": {
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"30B": {
"args": {"dim": 6656, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": 32000, "hidden_dim": 17920},
"files": 4,
},
"65B": {
"args": {"dim": 8192, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 22016},
"files": 8,
},
},
"2": {
"7B": {
"args": {"dim": 4096, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"70B": {
"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 28672},
"files": 8,
},
},
"code": {
"7B": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
"files": 1,
},
"7B-Python": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 11008},
"files": 1,
},
"7B-Instruct": {
"args": {"dim": 4096, "n_layers": 32, "n_heads": 32, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 11008},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
"files": 2,
},
"13B-Python": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 13824},
"files": 2,
},
"13B-Instruct": {
"args": {"dim": 5120, "n_layers": 40, "n_heads": 40, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32016, "hidden_dim": 13824},
"files": 2,
},
"34B": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
"34B-Python": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
"34B-Instruct": {
"args": {"dim": 8192, "n_layers": 48, "n_heads": 64, "n_kv_heads": 8, "norm_eps": 1e-05, "rope_theta": 1000000, "vocab_size": 32000, "hidden_dim": 22016},
"files": 4,
},
},
"tiny": {
"1B": {
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32000, "hidden_dim": 5632},
"files": 1,
},
"1B-Chat": {
"args": {"dim": 2048, "n_layers": 22, "n_heads": 32, "n_kv_heads": 4, "norm_eps": 1e-05, "vocab_size": 32003, "hidden_dim": 5632},
"files": 1,
}
}
}
# **** helper functions ****
def concat_weights(models):
def convert(name) -> Tensor:
disk_tensors = [model[name] for model in models]
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
return disk_tensors[0].to(device=Device.DEFAULT)
axis = 1 if name.startswith("tok_embeddings.") or name.endswith(".attention.wo.weight") or name.endswith(".feed_forward.w2.weight") else 0
lazy_tensors = [data.to(device=Device.DEFAULT) for data in disk_tensors]
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
return {name: convert(name) for name in {name: None for model in models for name in model}}
def load(fn:str):
if fn.endswith('.index.json'):
with open(fn) as fp: weight_map = json.load(fp)['weight_map']
parts = {n: load(str(Path(fn).parent / Path(n).name)) for n in set(weight_map.values())}
return {k: parts[n][k] for k, n in weight_map.items()}
elif fn.endswith(".safetensors"):
return safe_load(fn)
else:
return torch_load(fn)
class AbsmaxQuantizedLinear:
def __init__(self, in_features, out_features, bias=False):
assert bias == False
self.weight = Tensor.ones(out_features, in_features, dtype=dtypes.int8)
self.scale = Tensor.ones(out_features, dtype=dtypes.half)
def __call__(self, x):
return x.dot(self.weight.cast(dtype=dtypes.half).T*self.scale)
@staticmethod
def quantize(tensors):
new_tensors = {}
for name,v in tensors.items():
if "feed_forward" in name or ("attention.w") in name or name == "output.weight":
scale = v.abs().max(axis=1) / 127.0
int8_weight = (v.T/scale).T.cast(dtype=dtypes.int8)
new_tensors[name] = int8_weight
new_tensors[name.replace('weight', 'scale')] = scale
else:
new_tensors[name] = v
return new_tensors
class LLaMa:
@staticmethod
def build(model_path, tokenizer_path, model_gen="1", model_size="7B", quantize=False):
params = MODEL_PARAMS[model_gen][model_size]
sp_model = SentencePieceProcessor(model_file=str(tokenizer_path))
assert sp_model.vocab_size() == params["args"]["vocab_size"], f"{sp_model.vocab_size()=} not equal to {params['args']['vocab_size']}"
model = Transformer(**params["args"], linear=AbsmaxQuantizedLinear, max_context=MAX_CONTEXT) if quantize else Transformer(**params["args"], max_context=MAX_CONTEXT)
if model_path.is_dir():
weights = concat_weights([load(filename) for filename in [f"{model_path}/consolidated.{i:02d}.pth" for i in range(params["files"])]])
else:
weights = load(str(model_path))
if "model.embed_tokens.weight" in weights:
weights = convert_from_huggingface(weights, model, params["args"]["n_heads"], params["args"].get("n_kv_heads", params["args"]["n_heads"]))
if quantize:
weights = AbsmaxQuantizedLinear.quantize(weights)
for _,v in weights.items(): v.realize()
load_state_dict(model, weights, strict=False)
return LLaMa(model, sp_model)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer: SentencePieceProcessor = tokenizer
def greedy_until(self, prompt:str, until, max_length, temperature):
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
start_pos = 0
for i in range(max_length):
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, temperature).realize()
probs_np = probs.numpy()
tok = int(np.random.choice(len(probs_np), p=probs_np))
start_pos = len(toks)
toks.append(tok)
if tok == self.tokenizer.eos_id(): break
output = self.tokenizer.decode(toks)
for s in until:
if output.endswith(s): return output[0:-len(s)]
return output
# **** main code ****
"""
test:
python3 examples/llama.py --temperature=0 --count=50 --prompt="Hello."
output:
Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
test:
python3 examples/llama.py --gen='2' --temperature=0 --count=50 --prompt="Hello."
output:
Hello. I'm a 20 year old girl who is looking for a good lay in Palm Coast. I don't care whether it's at your place or not, as long as it's clean.
test:
python3 examples/llama.py --gen="code" --temperature=0.2 --count=50 --prompt="\
import argparse
def main(string: str):
print(string)
print(string[::-1])
if __name__ == "__main__":"
output:
parser = argparse.ArgumentParser()
parser.add_argument('string', type=str, help='string to be reversed')
args = parser.parse_args()
main(args.string)
test:
python3 examples/llama.py --gen="code" --size="7B-Python" --temperature=0.2 --count=70 --prompt="def add_elements(arr,k):"
output:
for i in range(len(arr)):
arr[i] += k
return arr
arr = [1, 2, 3, 4, 5]
k = 2
print(add_elements(arr, k))
test:
python3 examples/llama.py --gen="code" --size="7B-Instruct" --temperature=0.2 --count=120 --prompt="write a function in c++ that adds three float numbers"
output:
\begin{code}
#include<iostream>
using namespace std;
float add(float a, float b, float c)
{
return a+b+c;
}
int main()
{
float a, b, c;
cout<<"Enter three numbers: ";
cin>>a>>b>>c;
cout<<"The sum is: "<<add(a,b,c);
return 0;
}
\end{code}
"""
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
parser = argparse.ArgumentParser(description="Run LLaMA in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--prompt", type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
parser.add_argument("--count", type=int, default=1000, help="Max number of tokens to generate")
parser.add_argument("--personality", type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument("--timing", action="store_true", help="Print timing per token")
parser.add_argument("--profile", action="store_true", help="Output profile data to out.prof")
parser.add_argument("--gen", default="1", help=f"""Generation of the model to use {list(MODEL_PARAMS.keys())}""")
parser.add_argument("--size", type=str, default=None, help=f"""Size of model to use {", ".join([f"{list(v.keys())} for gen '{k}'" for k, v in MODEL_PARAMS.items()])}""")
parser.add_argument("--quantize", action="store_true", help="Quantize the weights to int8 in memory")
parser.add_argument("--model", type=Path, default=None, help="Folder with the original weights to load, or single .index.json, .safetensors or .bin file")
args = parser.parse_args()
if args.gen not in MODEL_PARAMS: raise ValueError("Invalid model generation")
if args.size is None: args.size = list(MODEL_PARAMS[args.gen].items())[0][0]
chatbot = args.prompt == None
# *** prompt engineers work here ****
if args.personality.lower() == "stacy":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
You are Stacy!
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
}
user_delim = "\nUser: "
resp_delim = "Stacy: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "george":
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
You are an AI version of George Hotz. You act as much as you can like George.
You are one of the greatest computer experts in the world.
You have singlehandedly won programming and hacking competitions.
You are trying your best to help the User.
You are verbose, honest, and accurate when you answer questions.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I'm am an AI version of George Hotz.",
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
}
user_delim = "\nUser: "
resp_delim = "George: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "gary":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
You are Gary!
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I am Gary. I used to sell cars.",
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
}
user_delim = "\nUser: "
resp_delim = "Gary: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "lexie":
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
You are Lexie!
You grew up in Ohio, but moved out to LA after college to try to become an actress.
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
You met Chad on Tinder, and made plans to meet him at a local dive bar.
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
After you are done speaking, output [EOS]. You are not Chad.
<CHAT LOG>
"""
examples = {
"hi lexie": "hi chad, glad we finally met up!",
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
}
user_delim = "\nChad: "
resp_delim = "Lexie: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
# *** prompt engineers stop here ****
LLAMA_SUFFIX = {"1": "", "2": "-2", "code": "-code", "tiny": "-tiny"}[args.gen]
MODEL_PATH = args.model or Path(__file__).parents[1] / f"weights/LLaMA{LLAMA_SUFFIX}/{args.size}"
TOKENIZER_PATH = (MODEL_PATH if MODEL_PATH.is_dir() else MODEL_PATH.parent) / "tokenizer.model"
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
llama = LLaMa.build(MODEL_PATH, TOKENIZER_PATH, model_gen=args.gen, model_size=args.size, quantize=args.quantize)
param_count = sum(x.lazydata.st.size() for x in get_parameters(llama.model))
if chatbot:
# encode pre prompt
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(pre_prompt)
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
with Timing():
llama.model(Tensor([toks]), 0, args.temperature).realize() # NOTE: outputs are not used
start_pos = len(toks)
else:
# non chat bot mode
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(args.prompt)
start_pos = 0
# print prompt
outputted = llama.tokenizer.decode(toks)
sys.stdout.write(outputted)
sys.stdout.flush()
# chatbot loop
while 1:
# add tokens from user in chatbot mode
if chatbot:
user_prompt = user_delim + input(user_delim) + "\n"
outputted += user_prompt
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
assert toks == new_toks[:len(toks)]
toks = new_toks
assert outputted == llama.tokenizer.decode(toks)
last_break = len(outputted)
for i in range(args.count):
GlobalCounters.reset()
if args.timing or args.profile: print("")
st = GlobalCounters.time_sum_s
with Profiling(enabled=args.profile):
with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/sec"):
with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s, param {param_count*1e-9*2/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=args.timing):
probs = llama.model(Tensor([toks[start_pos:]]), start_pos, args.temperature).realize()
# TODO: fix JIT rand so we can put this in the JIT
tok = probs.multinomial().item()
# use the kv cache
start_pos = len(toks)
# add the new token
toks.append(tok)
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
cur = llama.tokenizer.decode(toks)
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
# stop after you have your answer
if chatbot and outputted.endswith(end_delim): break
if not chatbot: break