mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-16 01:26:29 -05:00
* start uop emu * tiny_add passes * more ops * emulate the whole warp * test_gemm passes * metal gemm test pass * works on big gemm * works on big gemm * more tests pass * touch ups * fix mypy * cleanups * exp2 mypy * arch is where it belongs * actually emulate tensor cores * fix test * new style * add gated load support to PYTHON * out of bounds error message * cleaner
176 lines
7.6 KiB
Python
176 lines
7.6 KiB
Python
# a python uops emulator
|
|
# works to test the tensor cores, and all the uops in general
|
|
# this is the (living) definition of uops
|
|
from typing import Tuple, List, Optional, Any, Dict
|
|
import pickle, base64, itertools, time, math
|
|
from tinygrad.dtype import DType, dtypes
|
|
from tinygrad.helpers import all_same, getenv
|
|
from tinygrad.device import Compiled, Allocator, Compiler
|
|
from tinygrad.codegen.uops import UOp, UOps
|
|
from tinygrad.ops import UnaryOps, BinaryOps, TernaryOps
|
|
from tinygrad.codegen.kernel import LinearizerOptions
|
|
|
|
def exec_alu(arg, dtype, p):
|
|
# TODO: make this complete and correctly honor the dtypes
|
|
# TODO: use this for constant folding
|
|
if arg == TernaryOps.MULACC: return p[0]*p[1]+p[2]
|
|
if arg == TernaryOps.WHERE: return p[1] if p[0] else p[2]
|
|
if arg == UnaryOps.LOG2: return math.log2(p[0]) if p[0] > 0 else math.nan
|
|
if arg == UnaryOps.EXP2: return math.exp(p[0]*math.log(2))
|
|
if arg == UnaryOps.SQRT: return math.sqrt(p[0]) if p[0] > 0 else math.nan
|
|
if arg == UnaryOps.SIN: return math.sin(p[0])
|
|
if arg == UnaryOps.NEG: return -p[0]
|
|
if arg == BinaryOps.MUL: return p[0]*p[1]
|
|
if arg == BinaryOps.ADD: return p[0]+p[1]
|
|
if arg == BinaryOps.SUB: return p[0]-p[1]
|
|
if arg == BinaryOps.XOR: return p[0]^p[1]
|
|
if arg == BinaryOps.MAX: return max(p[0], p[1])
|
|
if arg == BinaryOps.CMPEQ: return p[0] == p[1]
|
|
if arg == BinaryOps.CMPLT: return p[0] < p[1]
|
|
if arg == BinaryOps.DIV: return p[0]//p[1] if dtypes.is_int(dtype) else (p[0]/p[1] if p[1] != 0 else math.nan)
|
|
if arg == BinaryOps.MOD: return p[0]%p[1]
|
|
raise NotImplementedError(f"no support for {arg}")
|
|
|
|
def _load(m, i):
|
|
if i<0 or i>=len(m): raise IndexError(f"access out of bounds, size is {len(m)} and access is {i}")
|
|
return m[i]
|
|
def load(inp, j=0):
|
|
if len(inp) == 4:
|
|
return [_load(m, x+j) if gate else default for m,x,gate,default in zip(*inp)]
|
|
else:
|
|
assert len(inp) == 2, "image loads not supported yet"
|
|
return [_load(m, x+j) for m,x in zip(inp[0], inp[1])]
|
|
|
|
class PythonProgram:
|
|
def __init__(self, name:str, lib:bytes):
|
|
self.uops: List[Tuple[UOps, Optional[DType], List[int], Any]] = pickle.loads(lib)
|
|
def __call__(self, *bufs, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
|
|
st = time.perf_counter()
|
|
warp = list(itertools.product(*[range(x) for x in local_size[::-1]]))
|
|
warp_size = len(warp)
|
|
for idxs in itertools.product(*[range(x) for x in global_size[::-1]]):
|
|
ul: Dict[int, Any] = {}
|
|
dl: Dict[int, DType] = {}
|
|
pbufs: List[memoryview] = list(bufs)
|
|
i = 0
|
|
loop_ends: Dict[int, int] = {}
|
|
while i < len(self.uops):
|
|
uop, dtype, idp, arg = self.uops[i]
|
|
inp = [ul[v] for v in idp]
|
|
dtp = [dl[v] for v in idp]
|
|
if uop is UOps.STORE:
|
|
if dtp[2].sz > 1:
|
|
for j,val in enumerate(inp[2]):
|
|
for m,o,v in zip(inp[0], inp[1], val): m[o+j] = v
|
|
else:
|
|
for m,o,v in zip(*inp): m[o] = v
|
|
i += 1
|
|
continue
|
|
elif uop is UOps.END:
|
|
loop_ends[idp[0]] = i
|
|
i = idp[0]
|
|
continue
|
|
elif uop is UOps.BARRIER:
|
|
# in the python emulator, the warp is always in sync
|
|
i += 1
|
|
continue
|
|
assert dtype is not None, f"{uop} is missing a dtype"
|
|
dl[i] = dtype
|
|
if uop is UOps.DEFINE_GLOBAL:
|
|
assert dtype.fmt is not None
|
|
ul[i] = [pbufs.pop(0).cast(dtype.fmt)] * warp_size
|
|
elif uop is UOps.DEFINE_LOCAL:
|
|
assert dtype.fmt is not None
|
|
lbuf = memoryview(bytearray(arg[1]*dtype.sz))
|
|
ul[i] = [lbuf.cast(dtype.fmt)] * warp_size
|
|
elif uop is UOps.SPECIAL:
|
|
if arg[1][0] == 'g':
|
|
ul[i] = [idxs[2-arg[0]]] * warp_size
|
|
elif arg[1][0] == 'l':
|
|
ul[i] = [x[2-arg[0]] for x in warp]
|
|
elif uop is UOps.CONST: ul[i] = [int(arg) if dtypes.is_int(dtype) else float(arg)] * warp_size
|
|
elif uop is UOps.DEFINE_ACC:
|
|
if dtype.sz > 1:
|
|
ul[i] = [[arg] * warp_size for _ in range(dtype.sz)]
|
|
else:
|
|
ul[i] = [arg] * warp_size
|
|
elif uop is UOps.LOOP:
|
|
if i not in ul:
|
|
ul[i] = [0] * warp_size
|
|
else:
|
|
for j in range(len(ul[i])):
|
|
ul[i][j] += 1
|
|
if ul[i][0] == inp[1][0]:
|
|
i = loop_ends[i] + 1
|
|
continue
|
|
elif uop is UOps.CAST:
|
|
if dtype.sz > 1:
|
|
ul[i] = inp
|
|
else:
|
|
# TODO: add real cast
|
|
if dtypes.is_int(dtype):
|
|
ul[i] = [int(x) for x in inp[0]]
|
|
elif dtypes.is_float(dtype):
|
|
ul[i] = [float(x) for x in inp[0]]
|
|
else:
|
|
ul[i] = inp[0]
|
|
elif uop is UOps.LOAD:
|
|
if dtype.sz > 1:
|
|
ul[i] = [load(inp, j) for j in range(dtype.sz)]
|
|
else:
|
|
ul[i] = load(inp)
|
|
elif uop is UOps.PHI:
|
|
for j in range(len(inp[0])):
|
|
inp[0][j] = inp[1][j]
|
|
ul[i] = inp[0]
|
|
elif uop is UOps.GEP:
|
|
ul[i] = inp[0][arg]
|
|
elif uop is UOps.WMMA:
|
|
# here are the models for the WMMA instruction on the different hardware
|
|
if arg == '__metal_wmma<float2,simdgroup_float8x8,float2>':
|
|
order = [0, 32, 1, 33, 8, 40, 9, 41,
|
|
2, 34, 3, 35, 10, 42, 11, 43,
|
|
4, 36, 5, 37, 12, 44, 13, 45,
|
|
6, 38, 7, 39, 14, 46, 15, 47,
|
|
16, 48, 17, 49, 24, 56, 25, 57,
|
|
18, 50, 19, 51, 26, 58, 27, 59,
|
|
20, 52, 21, 53, 28, 60, 29, 61,
|
|
22, 54, 23, 55, 30, 62, 31, 63]
|
|
def unswizzle(goff, x): return [x[0][goff+idx] if idx < 32 else
|
|
x[1][goff+idx-32] for idx in order]
|
|
out = inp[2][0][:], inp[2][1][:]
|
|
for goff in range(0, warp_size, 32):
|
|
m1,m2 = unswizzle(goff, inp[0]), unswizzle(goff, inp[1])
|
|
for _i in range(8):
|
|
for _j in range(8):
|
|
oidx = order[_i*8 + _j]
|
|
nval = sum(m1[_i*8+_k] * m2[_k*8+_j] for _k in range(8))
|
|
if oidx < 32: out[0][goff+oidx] += nval
|
|
else: out[1][goff+oidx-32] += nval
|
|
ul[i] = out
|
|
else:
|
|
raise Exception(f"unimplemented tensor core {arg}")
|
|
elif uop is UOps.ALU:
|
|
assert all_same([len(x) for x in inp]), f"{[len(x) for x in inp]} doesn't match on {arg}"
|
|
assert all_same([dtype] + dtp) or arg in {BinaryOps.CMPEQ, BinaryOps.CMPLT, TernaryOps.WHERE}, f"dtype mismatch on {arg}"
|
|
ul[i] = [exec_alu(arg, dtype, p) for p in zip(*inp)]
|
|
assert i in ul, (uop, dtype, idp, arg)
|
|
#print(i, uop, dtype, arg, ul[i] if i in ul else None)
|
|
i += 1
|
|
return time.perf_counter() - st
|
|
|
|
class PythonCompiler(Compiler):
|
|
linearizer_opts = LinearizerOptions("METAL", has_tensor_cores=True) if getenv("EMULATE_METAL") else LinearizerOptions()
|
|
def render(self, name:str, uops:List[UOp]) -> str:
|
|
lops = [(u.uop, u.dtype, [uops.index(v) for v in u.vin], u.arg) for u in uops]
|
|
return base64.b64encode(pickle.dumps(lops)).decode()
|
|
def compile(self, src:str) -> bytes: return base64.b64decode(src)
|
|
|
|
class PythonAllocator(Allocator):
|
|
def _alloc(self, size): return memoryview(bytearray(size))
|
|
def copyin(self, dest, src:memoryview): dest[:] = src
|
|
def copyout(self, dest:memoryview, src): dest[:] = src
|
|
|
|
class PythonDevice(Compiled):
|
|
def __init__(self, device:str):
|
|
super().__init__(device, PythonAllocator(), PythonCompiler(), PythonProgram) |