Files
tinygrad/extra/efficientnet.py
2020-12-06 12:20:14 -08:00

227 lines
7.2 KiB
Python

import math
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.utils import fetch
from tinygrad.nn import BatchNorm2D
USE_TORCH = False
def fake_torch_load(b0):
import io
import pickle
import struct
# convert it to a file
fb0 = io.BytesIO(b0)
# skip three junk pickles
pickle.load(fb0)
pickle.load(fb0)
pickle.load(fb0)
key_prelookup = {}
class HackTensor:
def __new__(cls, *args):
#print(args)
ident, storage_type, obj_key, location, obj_size, view_metadata = args[0]
assert ident == 'storage'
ret = np.zeros(obj_size, dtype=storage_type)
key_prelookup[obj_key] = (storage_type, obj_size, ret, args[2], args[3])
return ret
class MyPickle(pickle.Unpickler):
def find_class(self, module, name):
#print(module, name)
if name == 'FloatStorage':
return np.float32
if name == 'LongStorage':
return np.int64
if module == "torch._utils" or module == "torch":
return HackTensor
else:
return pickle.Unpickler.find_class(self, module, name)
def persistent_load(self, pid):
return pid
ret = MyPickle(fb0).load()
# create key_lookup
key_lookup = pickle.load(fb0)
key_real = [None] * len(key_lookup)
for k,v in key_prelookup.items():
key_real[key_lookup.index(k)] = v
# read in the actual data
for storage_type, obj_size, np_array, np_shape, np_strides in key_real:
ll = struct.unpack("Q", fb0.read(8))[0]
assert ll == obj_size
bytes_size = {np.float32: 4, np.int64: 8}[storage_type]
mydat = fb0.read(ll * bytes_size)
np_array[:] = np.frombuffer(mydat, storage_type)
np_array.shape = np_shape
# numpy stores its strides in bytes
real_strides = tuple([x*bytes_size for x in np_strides])
np_array.strides = real_strides
return ret
class MBConvBlock:
def __init__(self, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio):
oup = expand_ratio * input_filters
if expand_ratio != 1:
self._expand_conv = Tensor.zeros(oup, input_filters, 1, 1)
self._bn0 = BatchNorm2D(oup)
else:
self._expand_conv = None
self.strides = strides
if strides == (2,2):
self.pad = [(kernel_size-1)//2-1, (kernel_size-1)//2]*2
else:
self.pad = [(kernel_size-1)//2]*4
self._depthwise_conv = Tensor.zeros(oup, 1, kernel_size, kernel_size)
self._bn1 = BatchNorm2D(oup)
num_squeezed_channels = max(1, int(input_filters * se_ratio))
self._se_reduce = Tensor.zeros(num_squeezed_channels, oup, 1, 1)
self._se_reduce_bias = Tensor.zeros(num_squeezed_channels)
self._se_expand = Tensor.zeros(oup, num_squeezed_channels, 1, 1)
self._se_expand_bias = Tensor.zeros(oup)
self._project_conv = Tensor.zeros(output_filters, oup, 1, 1)
self._bn2 = BatchNorm2D(output_filters)
def __call__(self, inputs):
x = inputs
if self._expand_conv:
x = self._bn0(x.conv2d(self._expand_conv)).swish()
x = x.pad2d(padding=self.pad)
x = x.conv2d(self._depthwise_conv, stride=self.strides, groups=self._depthwise_conv.shape[0])
x = self._bn1(x).swish()
# has_se
x_squeezed = x.avg_pool2d(kernel_size=x.shape[2:4])
x_squeezed = x_squeezed.conv2d(self._se_reduce).add(self._se_reduce_bias.reshape(shape=[1, -1, 1, 1])).swish()
x_squeezed = x_squeezed.conv2d(self._se_expand).add(self._se_expand_bias.reshape(shape=[1, -1, 1, 1]))
x = x.mul(x_squeezed.sigmoid())
x = self._bn2(x.conv2d(self._project_conv))
if x.shape == inputs.shape:
x = x.add(inputs)
return x
class EfficientNet:
def __init__(self, number=0, classes=1000):
self.number = number
global_params = [
# width, depth
(1.0, 1.0), # b0
(1.0, 1.1), # b1
(1.1, 1.2), # b2
(1.2, 1.4), # b3
(1.4, 1.8), # b4
(1.6, 2.2), # b5
(1.8, 2.6), # b6
(2.0, 3.1), # b7
(2.2, 3.6), # b8
(4.3, 5.3), # l2
][number]
def round_filters(filters):
multiplier = global_params[0]
divisor = 8
filters *= multiplier
new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats):
return int(math.ceil(global_params[1] * repeats))
out_channels = round_filters(32)
self._conv_stem = Tensor.zeros(out_channels, 3, 3, 3)
self._bn0 = BatchNorm2D(out_channels)
blocks_args = [
[1, 3, (1,1), 1, 32, 16, 0.25],
[2, 3, (2,2), 6, 16, 24, 0.25],
[2, 5, (2,2), 6, 24, 40, 0.25],
[3, 3, (2,2), 6, 40, 80, 0.25],
[3, 5, (1,1), 6, 80, 112, 0.25],
[4, 5, (2,2), 6, 112, 192, 0.25],
[1, 3, (1,1), 6, 192, 320, 0.25],
]
self._blocks = []
# num_repeats, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio
for b in blocks_args:
args = b[1:]
args[3] = round_filters(args[3])
args[4] = round_filters(args[4])
for n in range(round_repeats(b[0])):
self._blocks.append(MBConvBlock(*args))
args[3] = args[4]
args[1] = (1,1)
in_channels = round_filters(320)
out_channels = round_filters(1280)
self._conv_head = Tensor.zeros(out_channels, in_channels, 1, 1)
self._bn1 = BatchNorm2D(out_channels)
self._fc = Tensor.zeros(out_channels, classes)
self._fc_bias = Tensor.zeros(classes)
def forward(self, x):
x = x.pad2d(padding=(0,1,0,1))
x = self._bn0(x.conv2d(self._conv_stem, stride=2)).swish()
for block in self._blocks:
#print(x.shape)
x = block(x)
x = self._bn1(x.conv2d(self._conv_head)).swish()
x = x.avg_pool2d(kernel_size=x.shape[2:4])
x = x.reshape(shape=(-1, x.shape[1]))
#x = x.dropout(0.2)
return x.dot(self._fc).add(self._fc_bias.reshape(shape=[1,-1]))
def load_weights_from_torch(self, gpu):
# load b0
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/utils.py#L551
if self.number == 0:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth")
elif self.number == 2:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth")
elif self.number == 4:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth")
elif self.number == 7:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth")
else:
raise Exception("no pretrained weights")
if USE_TORCH:
import io
import torch
b0 = torch.load(io.BytesIO(b0))
else:
b0 = fake_torch_load(b0)
for k,v in b0.items():
if '_blocks.' in k:
k = "%s[%s].%s" % tuple(k.split(".", 2))
mk = "self."+k
#print(k, v.shape)
try:
mv = eval(mk)
except AttributeError:
try:
mv = eval(mk.replace(".weight", ""))
except AttributeError:
mv = eval(mk.replace(".bias", "_bias"))
vnp = v.numpy().astype(np.float32) if USE_TORCH else v
mv.data[:] = vnp if k != '_fc.weight' else vnp.T
if gpu:
mv.cuda_()