Files
tinygrad/test/external/dist/test_world.py
wozeparrot 29d5801387 distributed collectives (#1519)
* feat: world

* feat: tests

* feat: no more backwards

* feat: recv into

* feat: whoops

* feat: test in ci

* feat: some debug logging

* feat: workflow naming

* feat: need to set pythonpath

* feat: just send to same device

* feat: allreduce

* feat: test

* feat: need contiguous

* feat: test in ci

* feat: exit with correct code

* feat: don't need that

* feat: opencl wait_for just doesn't work

* feat: synchronize on out

* feat: try?

* feat: try again?

* feat: add extra realizes

* feat: print

* feat: seed

* feat: tol

* feat: test ones and zeros

* feat: remove print

* feat: are you just flaky

* feat: seperate scatter and gather?

* feat: just try synchronizing

* feat: remove print again

* feat: bring back difference

* feat: no sync

* feat: revert that

* feat: back to wait_for

* fix: typo
2023-08-11 10:22:07 -07:00

66 lines
1.7 KiB
Python

from extra import dist
from tinygrad.jit import TinyJit
if __name__ == "__main__":
dist.preinit()
from extra.dist import world
from tinygrad.helpers import CI, getenv
from tinygrad.tensor import Tensor
import numpy as np
@TinyJit
def send_jit(t, target_rank, cache_id=None) -> Tensor:
return world.send(t, target_rank, cache_id=cache_id).realize()
@TinyJit
def recv_jit(t, target_rank, cache_id=None) -> Tensor:
return world.recv(t, target_rank, cache_id=cache_id).realize()
SIZE = 2048 if not CI else 2
def run():
# set a deterministic seed so that both ranks generate the same random tensor
Tensor.manual_seed(42)
rank = getenv("RANK")
# loop 3 times to make sure it works with the jit
for _ in range(3):
# create a tensor to send
t = Tensor.randn(SIZE, SIZE)
# send to rank 1
if rank == 0:
send_jit(t, 1, cache_id="test")
elif rank == 1:
t2 = Tensor.empty(SIZE, SIZE)
recv_jit(t2, 0, cache_id="test")
# recv from rank 1
if rank == 0:
t2 = Tensor.empty(SIZE, SIZE)
recv_jit(t2, 1, cache_id="test2")
elif rank == 1:
send_jit(t2, 0, cache_id="test2")
# check that the received tensor is the same as the sent tensor
if rank == 0:
assert np.allclose(t.numpy(), t2.numpy())
print(f"rank {rank} passed")
if __name__ == "__main__":
devices = ["gpu:0", "gpu:1" if not CI else "gpu:0"]
world_size = len(devices)
dist.init_oob(world_size)
processes = []
for rank, device in enumerate(devices):
processes.append(dist.spawn(rank, device, fn=run, args=()))
for p in processes: p.join()
# exit with error code if any of the processes failed
for p in processes:
if p.exitcode != 0: exit(p.exitcode)