Files
tinygrad/extra/assembly/rdna3/lib.py
2025-12-28 20:23:10 -05:00

255 lines
13 KiB
Python

# library for RDNA3 assembly DSL
from __future__ import annotations
from enum import IntEnum
from typing import overload, Annotated, TypeVar, Generic
# Bit field DSL
class BitField:
def __init__(self, hi: int, lo: int, name: str | None = None): self.hi, self.lo, self.name = hi, lo, name
def __set_name__(self, owner, name): self.name, self._owner = name, owner
def __eq__(self, val: int) -> tuple[BitField, int]: return (self, val) # type: ignore
def mask(self) -> int: return (1 << (self.hi - self.lo + 1)) - 1
@property
def marker(self) -> type | None:
# Get marker from Annotated type hint if present
import typing
if hasattr(self, '_owner') and self.name:
hints = typing.get_type_hints(self._owner, include_extras=True)
if self.name in hints:
hint = hints[self.name]
if typing.get_origin(hint) is Annotated:
args = typing.get_args(hint)
return args[1] if len(args) > 1 else None
return None
@overload
def __get__(self, obj: None, objtype: type) -> BitField: ...
@overload
def __get__(self, obj: object, objtype: type | None = None) -> int: ...
def __get__(self, obj, objtype=None):
if obj is None: return self
val = unwrap(obj._values.get(self.name, 0))
# Convert to IntEnum if marker is an IntEnum subclass
if self.marker and isinstance(self.marker, type) and issubclass(self.marker, IntEnum):
try: return self.marker(val)
except ValueError: pass
return val
class _Bits:
def __getitem__(self, key) -> BitField: return BitField(key.start, key.stop) if isinstance(key, slice) else BitField(key, key)
bits = _Bits()
# Register types
class Reg:
def __init__(self, idx: int, count: int = 1, hi: bool = False, neg: bool = False): self.idx, self.count, self.hi, self.neg = idx, count, hi, neg
def __repr__(self): return f"{self.__class__.__name__.lower()[0]}[{self.idx}]" if self.count == 1 else f"{self.__class__.__name__.lower()[0]}[{self.idx}:{self.idx + self.count}]"
def __neg__(self): return self.__class__(self.idx, self.count, self.hi, neg=not self.neg)
T = TypeVar('T', bound=Reg)
class _RegFactory(Generic[T]):
def __init__(self, cls: type[T], name: str): self._cls, self._name = cls, name
@overload
def __getitem__(self, key: int) -> Reg: ...
@overload
def __getitem__(self, key: slice) -> Reg: ...
def __getitem__(self, key: int | slice) -> Reg:
return self._cls(key.start, key.stop - key.start + 1) if isinstance(key, slice) else self._cls(key)
def __repr__(self): return f"<{self._name} factory>"
class SGPR(Reg): pass
class VGPR(Reg): pass
class TTMP(Reg): pass
s: _RegFactory[SGPR] = _RegFactory(SGPR, "SGPR")
v: _RegFactory[VGPR] = _RegFactory(VGPR, "VGPR")
ttmp: _RegFactory[TTMP] = _RegFactory(TTMP, "TTMP")
# Field type markers (runtime classes for validation)
class _SSrc: pass
class _Src: pass
class _Imm: pass
class _SImm: pass
class _VDSTYEnc: pass # VOPD vdsty: encoded = actual >> 1, actual = (encoded << 1) | ((vdstx & 1) ^ 1)
class _SGPRField: pass
class _VGPRField: pass
# Type aliases for annotations - tells mypy it's a BitField while preserving marker info
SSrc = Annotated[BitField, _SSrc]
Src = Annotated[BitField, _Src]
Imm = Annotated[BitField, _Imm]
SImm = Annotated[BitField, _SImm]
VDSTYEnc = Annotated[BitField, _VDSTYEnc]
SGPRField = Annotated[BitField, _SGPRField]
VGPRField = Annotated[BitField, _VGPRField]
class RawImm:
def __init__(self, val: int): self.val = val
def __repr__(self): return f"RawImm({self.val})"
def __eq__(self, other): return isinstance(other, RawImm) and self.val == other.val
def unwrap(val) -> int:
return val.val if isinstance(val, RawImm) else val.value if hasattr(val, 'value') else val.idx if hasattr(val, 'idx') else val
# Encoding helpers
FLOAT_ENC = {0.5: 240, -0.5: 241, 1.0: 242, -1.0: 243, 2.0: 244, -2.0: 245, 4.0: 246, -4.0: 247}
SRC_FIELDS = {'src0', 'src1', 'src2', 'ssrc0', 'ssrc1', 'soffset', 'srcx0', 'srcy0'}
RAW_FIELDS = {'vdata', 'vdst', 'vaddr', 'addr', 'data', 'data0', 'data1', 'sdst', 'sdata'}
def _encode_reg(val) -> int:
if isinstance(val, TTMP): return 108 + val.idx
return val.idx | (0x80 if val.hi else 0)
def encode_src(val) -> int:
if isinstance(val, VGPR): return 256 + _encode_reg(val)
if isinstance(val, Reg): return _encode_reg(val)
if hasattr(val, 'value'): return val.value
if isinstance(val, float): return 128 if val == 0.0 else FLOAT_ENC.get(val, 255)
return 128 + val if isinstance(val, int) and 0 <= val <= 64 else 192 + (-val) if isinstance(val, int) and -16 <= val <= -1 else 255
# Instruction base class
class Inst:
_fields: dict[str, BitField]
_encoding: tuple[BitField, int] | None = None
_defaults: dict[str, int] = {}
_values: dict[str, int | RawImm]
_words: int # size in 32-bit words, set by decode_program
_literal: int | None
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls._fields = {n: v[0] if isinstance(v, tuple) else v for n, v in cls.__dict__.items() if isinstance(v, BitField) or (isinstance(v, tuple) and len(v) == 2 and isinstance(v[0], BitField))}
if 'encoding' in cls._fields and isinstance(cls.__dict__.get('encoding'), tuple): cls._encoding = cls.__dict__['encoding']
def __init__(self, *args, literal: int | None = None, **kwargs):
self._values, self._literal = dict(self._defaults), literal
# Map positional args to field names
field_names = [n for n in self._fields if n != 'encoding']
orig_args = dict(zip(field_names, args))
orig_args.update(kwargs)
self._values.update(orig_args)
# Validate register counts for SMEM instructions (before encoding)
if self.__class__.__name__ == 'SMEM':
op_val = orig_args.get(field_names[0]) if args else orig_args.get('op')
if op_val is not None:
if hasattr(op_val, 'value'): op_val = op_val.value
expected_cnt = {0:1, 1:2, 2:4, 3:8, 4:16, 8:1, 9:2, 10:4, 11:8, 12:16}.get(op_val)
sdata_val = orig_args.get('sdata')
if expected_cnt is not None and isinstance(sdata_val, Reg) and sdata_val.count != expected_cnt:
raise ValueError(f"SMEM op {op_val} expects {expected_cnt} registers, got {sdata_val.count}")
# Validate register counts for SOP1 instructions (b32 = 1 reg, b64 = 2 regs)
if self.__class__.__name__ == 'SOP1':
op_val = orig_args.get(field_names[0]) if args else orig_args.get('op')
if op_val is not None and hasattr(op_val, 'name'):
expected = 2 if op_val.name.endswith('_B64') else 1
sdst_val, ssrc0_val = orig_args.get('sdst'), orig_args.get('ssrc0')
if isinstance(sdst_val, Reg) and sdst_val.count != expected:
raise ValueError(f"SOP1 {op_val.name} expects {expected} destination register(s), got {sdst_val.count}")
if isinstance(ssrc0_val, Reg) and ssrc0_val.count != expected:
raise ValueError(f"SOP1 {op_val.name} expects {expected} source register(s), got {ssrc0_val.count}")
# Type check and encode values
for name, val in list(self._values.items()):
if name == 'encoding': continue
# For RawImm, only process RAW_FIELDS to unwrap to int
if isinstance(val, RawImm):
if name in RAW_FIELDS: self._values[name] = val.val
continue
field = self._fields.get(name)
marker = field.marker if field else None
# Type validation
if marker is _SGPRField:
if isinstance(val, VGPR): raise TypeError(f"field '{name}' requires SGPR, got VGPR")
if not isinstance(val, (SGPR, TTMP, int, RawImm)): raise TypeError(f"field '{name}' requires SGPR, got {type(val).__name__}")
if marker is _VGPRField:
if not isinstance(val, VGPR): raise TypeError(f"field '{name}' requires VGPR, got {type(val).__name__}")
if marker is _SSrc and isinstance(val, VGPR): raise TypeError(f"field '{name}' requires scalar source, got VGPR")
# Encode source fields as RawImm for consistent disassembly
if name in SRC_FIELDS:
encoded = encode_src(val)
self._values[name] = RawImm(encoded)
# Handle negation modifier for VOP3 instructions
if isinstance(val, Reg) and val.neg and 'neg' in self._fields:
neg_bit = {'src0': 1, 'src1': 2, 'src2': 4}.get(name, 0)
cur_neg = self._values.get('neg', 0)
self._values['neg'] = (cur_neg.val if isinstance(cur_neg, RawImm) else cur_neg) | neg_bit
# Track literal value if needed (encoded as 255)
if encoded == 255 and self._literal is None and isinstance(val, int) and not isinstance(val, IntEnum):
self._literal = val
elif encoded == 255 and self._literal is None and isinstance(val, float):
import struct
self._literal = struct.unpack('<I', struct.pack('<f', val))[0]
# Encode raw register fields for consistent repr
elif name in RAW_FIELDS:
if isinstance(val, Reg): self._values[name] = _encode_reg(val)
elif hasattr(val, 'value'): self._values[name] = val.value # IntEnum like SrcEnum.NULL
# Encode sbase (divided by 2) and srsrc/ssamp (divided by 4)
elif name == 'sbase' and isinstance(val, Reg):
self._values[name] = val.idx // 2
elif name in {'srsrc', 'ssamp'} and isinstance(val, Reg):
self._values[name] = val.idx // 4
# VOPD vdsty: encode as actual >> 1 (constraint: vdsty parity must be opposite of vdstx)
elif marker is _VDSTYEnc and isinstance(val, VGPR):
self._values[name] = val.idx >> 1
def _encode_field(self, name: str, val) -> int:
if isinstance(val, RawImm): return val.val
if name in {'srsrc', 'ssamp'}: return val.idx // 4 if isinstance(val, Reg) else val
if name == 'sbase': return val.idx // 2 if isinstance(val, Reg) else val
if name in RAW_FIELDS: return _encode_reg(val) if isinstance(val, Reg) else val
if isinstance(val, Reg) or name in SRC_FIELDS: return encode_src(val)
return val.value if hasattr(val, 'value') else val
def to_int(self) -> int:
word = (self._encoding[1] & self._encoding[0].mask()) << self._encoding[0].lo if self._encoding else 0
for n, bf in self._fields.items():
if n != 'encoding' and n in self._values: word |= (self._encode_field(n, self._values[n]) & bf.mask()) << bf.lo
return word
def _get_literal(self) -> int | None:
for n in SRC_FIELDS:
if n in self._values and not isinstance(v := self._values[n], RawImm) and isinstance(v, int) and not isinstance(v, IntEnum) and not (0 <= v <= 64 or -16 <= v <= -1): return v
return None
def to_bytes(self) -> bytes:
result = self.to_int().to_bytes(self._size(), 'little')
return result + (lit & 0xffffffff).to_bytes(4, 'little') if (lit := self._get_literal() or getattr(self, '_literal', None)) else result
@classmethod
def _size(cls) -> int: return 4 if issubclass(cls, Inst32) else 8
def size(self) -> int: return self._size() + (4 if self._literal is not None else 0)
@classmethod
def from_int(cls, word: int):
inst = object.__new__(cls)
inst._values = {n: RawImm(v) if n in SRC_FIELDS else v for n, bf in cls._fields.items() if n != 'encoding' for v in [(word >> bf.lo) & bf.mask()]}
inst._literal = None
return inst
@classmethod
def from_bytes(cls, data: bytes):
inst = cls.from_int(int.from_bytes(data[:cls._size()], 'little'))
op_val = inst._values.get('op', 0)
has_literal = cls.__name__ == 'VOP2' and op_val in (44, 45, 55, 56)
has_literal = has_literal or (cls.__name__ == 'SOP2' and op_val in (69, 70))
for n in SRC_FIELDS:
if n in inst._values and isinstance(inst._values[n], RawImm) and inst._values[n].val == 255: has_literal = True
if has_literal and len(data) >= cls._size() + 4: inst._literal = int.from_bytes(data[cls._size():cls._size()+4], 'little')
return inst
def __repr__(self):
# Use _fields order and exclude fields that are 0/default (for consistent repr after roundtrip)
def is_zero(v): return (isinstance(v, int) and v == 0) or (isinstance(v, VGPR) and v.idx == 0 and v.count == 1)
items = [(k, self._values[k]) for k in self._fields if k in self._values and k != 'encoding'
and not (is_zero(self._values[k]) and k not in {'op'})]
lit = f", literal={hex(self._literal)}" if self._literal is not None else ""
return f"{self.__class__.__name__}({', '.join(f'{k}={v}' for k, v in items)}{lit})"
def __eq__(self, other):
if not isinstance(other, Inst): return NotImplemented
return self.__class__ == other.__class__ and self._values == other._values and self._literal == other._literal
def __hash__(self): return hash((self.__class__.__name__, tuple(sorted((k, repr(v)) for k, v in self._values.items())), self._literal))
def disasm(self) -> str:
from extra.assembly.rdna3.asm import disasm
return disasm(self)
class Inst32(Inst): pass
class Inst64(Inst): pass