mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 23:18:04 -05:00
replaced all dtype.np with _to_np_dtype defined in tensor.py. after this, the only numpy usages are (1) Tensor(np.ndarray), (2) construct .numpy() output, (3) numpy random buffer
582 lines
22 KiB
Python
582 lines
22 KiB
Python
import numpy as np
|
|
import torch
|
|
import unittest, copy, mmap, random
|
|
from tinygrad import Tensor, Device, dtypes
|
|
from tinygrad.helpers import getenv, temp, CI
|
|
from extra.gradcheck import numerical_jacobian, jacobian, gradcheck
|
|
from hypothesis import given, settings, strategies as strat
|
|
|
|
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
|
|
settings.load_profile("my_profile")
|
|
|
|
x_init = np.random.randn(1,3).astype(np.float32)
|
|
U_init = np.random.randn(3,3).astype(np.float32)
|
|
V_init = np.random.randn(3,3).astype(np.float32)
|
|
W_init = np.random.randn(3,3).astype(np.float32)
|
|
m_init = np.random.randn(1,3).astype(np.float32)
|
|
|
|
class TestTinygrad(unittest.TestCase):
|
|
def test_zerodim_initialization(self):
|
|
self.assertEqual(Tensor(55).shape, ())
|
|
self.assertEqual(Tensor(3.14).shape, ())
|
|
|
|
def test_plus_equals(self):
|
|
a = Tensor.randn(10,10)
|
|
b = Tensor.randn(10,10)
|
|
c = a + b
|
|
val1 = c.numpy()
|
|
a += b
|
|
val2 = a.numpy()
|
|
np.testing.assert_allclose(val1, val2)
|
|
|
|
def test_backward_pass(self):
|
|
def test_tinygrad():
|
|
x = Tensor(x_init, requires_grad=True)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
m = Tensor(m_init)
|
|
out = x.dot(W).relu()
|
|
out = out.log_softmax()
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.numpy(), x.grad.numpy(), W.grad.numpy()
|
|
|
|
def test_pytorch():
|
|
x = torch.tensor(x_init, requires_grad=True)
|
|
W = torch.tensor(W_init, requires_grad=True)
|
|
m = torch.tensor(m_init)
|
|
out = x.matmul(W).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.mul(m).add(m).sum()
|
|
out.backward()
|
|
return out.detach().numpy(), x.grad, W.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "this test uses more than 8 bufs which breaks webgpu") #TODO: remove after #1461
|
|
def test_backward_pass_diamond_model(self):
|
|
def test_tinygrad():
|
|
u = Tensor(U_init, requires_grad=True)
|
|
v = Tensor(V_init, requires_grad=True)
|
|
w = Tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = out.log_softmax()
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.numpy(), u.grad.numpy(), v.grad.numpy(), w.grad.numpy()
|
|
|
|
def test_pytorch():
|
|
u = torch.tensor(U_init, requires_grad=True)
|
|
v = torch.tensor(V_init, requires_grad=True)
|
|
w = torch.tensor(W_init, requires_grad=True)
|
|
x = u.mul(v).relu()
|
|
y = u.mul(w).relu()
|
|
out = x.add(y).mul(y).relu()
|
|
out = torch.nn.functional.log_softmax(out, dim=1)
|
|
out = out.sum()
|
|
out.backward()
|
|
return out.detach().numpy(), u.grad, v.grad, w.grad
|
|
|
|
for x,y in zip(test_tinygrad(), test_pytorch()):
|
|
np.testing.assert_allclose(x, y, atol=1e-5)
|
|
|
|
def test_nograd(self):
|
|
x = Tensor(x_init, requires_grad=False)
|
|
m = Tensor(m_init, requires_grad=False)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
tmp = x.mul(m)
|
|
mm = tmp.matmul(W)
|
|
out = mm.relu()
|
|
out = out.sum()
|
|
out.backward()
|
|
assert x.grad is None
|
|
assert m.grad is None
|
|
assert tmp.grad is None
|
|
assert mm.grad is not None
|
|
assert W.grad is not None
|
|
|
|
def test_dropout(self):
|
|
with Tensor.train():
|
|
n, rate = 1_000_000, 0.1
|
|
w = Tensor.ones(n).dropout(rate)
|
|
non_zeros = np.count_nonzero(w.numpy())
|
|
expected = n * (1 - rate)
|
|
np.testing.assert_allclose(non_zeros, expected, rtol=2e-3)
|
|
|
|
def test_jacobian(self):
|
|
W = np.random.RandomState(42069).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(69420).random((1, 10)).astype(np.float32)
|
|
|
|
torch_x = torch.tensor(x, requires_grad=True)
|
|
torch_W = torch.tensor(W, requires_grad=True)
|
|
def torch_func(x): return torch.nn.functional.log_softmax(x.matmul(torch_W).relu(), dim=1)
|
|
PJ = torch.autograd.functional.jacobian(torch_func, torch_x).squeeze().numpy()
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
|
|
J = jacobian(tiny_func, tiny_x)
|
|
NJ = numerical_jacobian(tiny_func, tiny_x)
|
|
|
|
np.testing.assert_allclose(PJ, J, atol = 1e-5)
|
|
np.testing.assert_allclose(PJ, NJ, atol = 1e-3)
|
|
|
|
def test_gradcheck(self):
|
|
W = np.random.RandomState(1337).random((10, 5)).astype(np.float32)
|
|
x = np.random.RandomState(7331).random((1, 10)).astype(np.float32)
|
|
|
|
tiny_x = Tensor(x, requires_grad=True)
|
|
tiny_W = Tensor(W, requires_grad=True)
|
|
def tiny_func(x): return x.dot(tiny_W).relu().log_softmax()
|
|
|
|
self.assertTrue(gradcheck(tiny_func, tiny_x, eps = 1e-3))
|
|
|
|
# coarse approx. since a "big" eps and the non-linearities of the model
|
|
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 1e-5))
|
|
|
|
def test_random_fns_are_deterministic_with_seed(self):
|
|
for random_fn in [Tensor.randn, Tensor.normal, Tensor.uniform, Tensor.scaled_uniform, Tensor.glorot_uniform, Tensor.kaiming_normal]:
|
|
with self.subTest(msg=f"Tensor.{random_fn.__name__}"):
|
|
Tensor.manual_seed(1337)
|
|
a = random_fn(10,10).realize()
|
|
Tensor.manual_seed(1337)
|
|
b = random_fn(10,10).realize()
|
|
np.testing.assert_allclose(a.numpy(), b.numpy())
|
|
|
|
def test_randn_isnt_inf_on_zero(self):
|
|
# simulate failure case of rand handing a zero to randn
|
|
original_rand, Tensor.rand = Tensor.rand, Tensor.zeros
|
|
try: self.assertNotIn(np.inf, Tensor.randn(16).numpy())
|
|
except: raise
|
|
finally: Tensor.rand = original_rand
|
|
|
|
def test_zeros_like_has_same_dtype_and_shape(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.zeros_like(a)
|
|
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
|
|
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.zeros_like(a, dtype=dtypes.int8)
|
|
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
|
|
|
|
def test_ones_like_has_same_dtype_and_shape(self):
|
|
for datatype in [dtypes.float16, dtypes.float32, dtypes.int8, dtypes.int32, dtypes.int64, dtypes.uint8]:
|
|
a = Tensor([1, 2, 3], dtype=datatype)
|
|
b = Tensor.ones_like(a)
|
|
assert a.dtype == b.dtype, f"dtype mismatch {a.dtype=} != {b.dtype}"
|
|
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
|
|
|
|
a = Tensor([1, 2, 3])
|
|
b = Tensor.ones_like(a, dtype=dtypes.int8)
|
|
assert a.dtype == dtypes.default_int and b.dtype == dtypes.int8, "a.dtype should be int and b.dtype should be char"
|
|
assert a.shape == b.shape, f"shape mismatch {a.shape} != {b.shape}"
|
|
|
|
def test_ndim(self):
|
|
assert Tensor(1).ndim == 0
|
|
assert Tensor.randn(1).ndim == 1
|
|
assert Tensor.randn(2,2,2).ndim == 3
|
|
assert Tensor.randn(1,1,1,1,1,1).ndim == 6
|
|
|
|
def test_argfix(self):
|
|
for f in [Tensor.zeros, Tensor.ones, Tensor.rand, Tensor.randn, Tensor.empty]:
|
|
self.assertEqual(f().shape, ())
|
|
self.assertEqual(f(1).shape, (1,))
|
|
self.assertEqual(f(10,20,40).shape, (10,20,40))
|
|
self.assertEqual(f([]).shape, ())
|
|
self.assertEqual(f([1]).shape, (1,))
|
|
self.assertEqual(f([10,20,40]).shape, (10,20,40))
|
|
self.assertEqual(f(()).shape, ())
|
|
self.assertEqual(f((1,)).shape, (1,))
|
|
self.assertEqual(f((10,20,40)).shape, (10,20,40))
|
|
|
|
with self.assertRaises(ValueError): f((2, 2), 2, 2)
|
|
with self.assertRaises(ValueError): f((2, 2), (2, 2))
|
|
with self.assertRaises(ValueError): f((128, 128), 0.0, 0.01)
|
|
|
|
def test_numel(self):
|
|
assert Tensor.randn(10, 10).numel() == 100
|
|
assert Tensor.randn(1,2,5).numel() == 10
|
|
assert Tensor.randn(1,1,1,1,1,1).numel() == 1
|
|
assert Tensor([]).numel() == 0
|
|
assert Tensor.randn(1,0,2,5).numel() == 0
|
|
|
|
def test_len(self):
|
|
assert len(torch.zeros(7)) == len(Tensor.zeros(7))
|
|
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20))
|
|
assert len(torch.zeros(10,20)) == len(Tensor.zeros(10,20,30))
|
|
assert len(torch.zeros(1).flatten()) == len(Tensor.zeros(1).flatten())
|
|
|
|
def test_size(self):
|
|
t1, t2 = torch.zeros(10,20), Tensor.zeros(10,20)
|
|
assert t1.size() == t2.size()
|
|
assert t1.size(0) == t2.size(0)
|
|
assert t1.size(1) == t2.size(1)
|
|
assert t1.size(-1) == t2.size(-1)
|
|
assert t1.size(-2) == t2.size(-2)
|
|
with self.assertRaises(IndexError): t2.size(2)
|
|
|
|
def test_tolist(self):
|
|
# NOTE: float16 Tensor.tolist() requires python 3.12
|
|
for arr in [[1,2,3], [1.5,2,3], [[1,2,3], [4,5,6]], 3]:
|
|
assert Tensor(arr).tolist() == torch.tensor(arr).tolist() == arr
|
|
|
|
def test_element_size(self):
|
|
for _, dtype in dtypes.fields().items():
|
|
assert dtype.itemsize == Tensor.randn(3, dtype=dtype).element_size(), f"Tensor.element_size() not matching Tensor.dtype.itemsize for {dtype}"
|
|
|
|
def test_deepwalk_ctx_check(self):
|
|
layer = Tensor.uniform(1, 1, requires_grad=True)
|
|
x = Tensor.randn(1, 1, 1)
|
|
x.dot(layer).mean().backward()
|
|
x = Tensor.randn(1, 1, 1)
|
|
x.dot(layer).mean().backward()
|
|
|
|
def test_zerosized_tensors(self):
|
|
np.testing.assert_equal(Tensor([]).numpy(), np.array([]))
|
|
np.testing.assert_equal(Tensor(None).numpy(), np.array([]))
|
|
|
|
def test_tensor_ndarray_dtype(self):
|
|
arr = np.array([1]) # where dtype is implicitly int64
|
|
assert Tensor(arr).dtype == dtypes.int64
|
|
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32 # check if ndarray correctly casts to Tensor dtype
|
|
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64 # check that it works for something else
|
|
|
|
def test_tensor_list_dtype(self):
|
|
for arr in ([1], [[[1]]], [[1,1],[1,1]], [[[1,1],[1,1]],[[1,1],[1,1]]]):
|
|
assert Tensor(arr).dtype == dtypes.default_int
|
|
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
|
|
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
|
|
|
|
for arr in ([True], [[[False]]], [[True,False],[True,False]], [[[False,True],[False,False]],[[True,True],[False,True]]]):
|
|
assert Tensor(arr).dtype == dtypes.bool
|
|
assert Tensor(arr, dtype=dtypes.float32).dtype == dtypes.float32
|
|
assert Tensor(arr, dtype=dtypes.float64).dtype == dtypes.float64
|
|
|
|
# empty tensor defaults
|
|
for arr in ([], [[[]]], [[],[]]):
|
|
t = Tensor(arr)
|
|
assert t.dtype == dtypes.default_float
|
|
np.testing.assert_allclose(t.numpy(), np.array(arr))
|
|
|
|
# mixture of bool and int
|
|
for arr in ([True, 3], [[True],[3]], [[[True]], [[3]]], [[True, 3], [3, True]]):
|
|
t = Tensor(arr)
|
|
assert t.dtype == dtypes.default_int
|
|
np.testing.assert_allclose(t.numpy(), np.array(arr))
|
|
|
|
# mixture of bool, int and float
|
|
for arr in ([[True,True],[3.,True]], [[0,1],[3.,4]], [[[0],[1]],[[3.],[4]]], [[[True],[1]],[[3.],[4]]]):
|
|
t = Tensor(arr)
|
|
assert t.dtype == dtypes.default_float
|
|
np.testing.assert_allclose(t.numpy(), np.array(arr))
|
|
|
|
def test_tensor_list_shapes(self):
|
|
self.assertEqual(Tensor([[[]]]).shape, (1,1,0))
|
|
self.assertEqual(Tensor([[],[]]).shape, (2,0))
|
|
self.assertEqual(Tensor([[[[]],[[]]], [[[]],[[]]], [[[]],[[]]]]).shape, (3,2,1,0))
|
|
|
|
def test_tensor_list_errors(self):
|
|
# inhomogeneous shape
|
|
with self.assertRaises(ValueError): Tensor([[],[[]]])
|
|
with self.assertRaises(ValueError): Tensor([[1],[]])
|
|
with self.assertRaises(ValueError): Tensor([[1],[1],1])
|
|
with self.assertRaises(ValueError): Tensor([[[1,1,1],[1,1]]])
|
|
with self.assertRaises(ValueError): Tensor([[1,1,1],[[1,1,1]]])
|
|
|
|
def test_tensor_mixed_list_tuple(self):
|
|
def _list_or_tuple(): return list if random.random() < 0.5 else tuple
|
|
def _generate_data(depth):
|
|
if depth == 0: return _list_or_tuple()()
|
|
if depth == 1: return _list_or_tuple()([random.random(), random.random()])
|
|
return _list_or_tuple()([_generate_data(depth-1), _generate_data(depth-1)])
|
|
|
|
for depth in range(7):
|
|
for _ in range(20):
|
|
data = _generate_data(depth)
|
|
np.testing.assert_allclose(Tensor(data).numpy(), np.array(data))
|
|
|
|
def test_tensor_bytes(self):
|
|
data = b"abc123"
|
|
t = Tensor(data)
|
|
assert t.dtype == dtypes.uint8
|
|
assert t.shape == (6,)
|
|
np.testing.assert_equal(t.numpy(), list(data))
|
|
|
|
def test_tensor_copy(self):
|
|
x = copy.deepcopy(Tensor.ones((3,3,3)))
|
|
np.testing.assert_allclose(x.numpy(), np.ones((3,3,3)))
|
|
|
|
def test_copy_from_disk(self):
|
|
t = Tensor.randn(30).to(f"disk:{temp('test_copy_from_disk')}")
|
|
a = t[10:20]
|
|
dev = a.to(Device.DEFAULT)
|
|
np.testing.assert_allclose(a.numpy(), dev.numpy())
|
|
|
|
# Regression test for https://github.com/tinygrad/tinygrad/issues/1751
|
|
def test_copy_from_numpy_unaligned(self):
|
|
# 2**15 is the minimum for repro
|
|
arr = np.random.randn(2**15).astype(np.float32)
|
|
fn = temp('test_copy_from_numpy_unaligned')
|
|
with open(fn, 'wb') as f: f.write(b't' + arr.tobytes())
|
|
with open(fn, "a+b") as f: memview = memoryview(mmap.mmap(f.fileno(), arr.nbytes + 1))
|
|
ua_arr = np.frombuffer(memview[1:], dtype=arr.dtype, count=arr.shape[0])
|
|
np.testing.assert_allclose(arr, ua_arr)
|
|
assert not ua_arr.flags.aligned
|
|
# force device copy - to() is opt'd away - Tensor(dev)/1 is ignored
|
|
np.testing.assert_allclose(ua_arr, (Tensor(ua_arr)/Tensor(1)).numpy())
|
|
|
|
def test_item_to_tensor_to_item(self):
|
|
for a in [0, 1, 2, 3, -1, -100, 100, -101.1, 2.345, 100.1, True, False]:
|
|
item = Tensor(a).item()
|
|
assert type(item) == type(a), a
|
|
np.testing.assert_allclose(item, a), a
|
|
buffered_item = Tensor([a]).item()
|
|
assert type(buffered_item) == type(a), a
|
|
np.testing.assert_allclose(buffered_item, a), a
|
|
reshaped_item = Tensor([a]).reshape((1, 1, 1, 1, 1)).item()
|
|
assert type(reshaped_item) == type(a), a
|
|
np.testing.assert_allclose(reshaped_item, a), a
|
|
|
|
def test_no_bool(self):
|
|
with self.assertRaises(TypeError):
|
|
if Tensor(3):
|
|
print("hi")
|
|
|
|
with self.assertRaises(TypeError):
|
|
_a = Tensor([3]) in [Tensor([3]), Tensor([4]), Tensor([5])]
|
|
|
|
def test_repr_with_grad(self):
|
|
a = Tensor([1], requires_grad=True)
|
|
b = Tensor([1])
|
|
c = (a + b).mean().backward()
|
|
print(a)
|
|
print(c)
|
|
|
|
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL", "NV", "AMD"}, "no GPU CI")
|
|
class TestMoveTensor(unittest.TestCase):
|
|
d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"
|
|
@given(strat.sampled_from([d0, d1]), strat.sampled_from([d0, d1]),
|
|
strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
|
|
def test_to_preserves(self, src, dest, dtype, requires_grad):
|
|
s = Tensor([1, 2, 3], device=src, dtype=dtype, requires_grad=requires_grad)
|
|
if requires_grad: s.sum().backward()
|
|
t = s.to(dest)
|
|
np.testing.assert_equal(s.numpy(), t.numpy())
|
|
assert s.dtype == t.dtype
|
|
assert s.requires_grad == t.requires_grad
|
|
if requires_grad:
|
|
np.testing.assert_equal(s.grad.numpy(), t.grad.numpy())
|
|
|
|
@given(strat.sampled_from([dtypes.float16, dtypes.float32]), strat.sampled_from([True, False, None]))
|
|
def test_shard_preserves(self, dtype, requires_grad):
|
|
s = Tensor([1, 2, 3], dtype=dtype, requires_grad=requires_grad)
|
|
t = s.shard((f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"))
|
|
np.testing.assert_equal(s.numpy(), t.numpy())
|
|
assert s.dtype == t.dtype
|
|
assert s.requires_grad == t.requires_grad
|
|
|
|
@given(strat.sampled_from([d0, d1]))
|
|
def test_same_dev(self, dev):
|
|
x = Tensor([1,2,3], device=dev)
|
|
y = x.to(dev)
|
|
assert x is y
|
|
|
|
def test_to_grad(self):
|
|
x = Tensor.eye(3, requires_grad=True, device=self.d0)
|
|
y = Tensor([[2.0,0,-2.0]], requires_grad=True, device=self.d0)
|
|
z = y.matmul(x).to(self.d1).sum()
|
|
z.backward()
|
|
np.testing.assert_equal(x.grad.numpy(), [[2,2,2],[0,0,0],[-2,-2,-2]])
|
|
|
|
class TestZeroShapeTensor(unittest.TestCase):
|
|
def test_shape_stride(self):
|
|
t = Tensor.empty(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
# numpy has stride 0, 0, 0; torch has stride 2, 1, 1
|
|
assert t.lazydata.st.real_strides() == (0, 0, 0)
|
|
|
|
t = Tensor.empty(3, 0, 2)
|
|
assert t.shape == (3, 0, 2)
|
|
# numpy has stride 0, 0, 0; torch has stride 2, 2, 1
|
|
assert t.lazydata.st.real_strides() == (0, 0, 0)
|
|
|
|
t = Tensor.empty(0, 0, 0)
|
|
assert t.shape == (0, 0, 0)
|
|
# numpy has stride 0, 0, 0; torch has stride 1, 1, 1
|
|
assert t.lazydata.st.real_strides() == (0, 0, 0)
|
|
|
|
def test_rand(self):
|
|
t = Tensor.rand(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
|
|
t = Tensor.rand(0)
|
|
assert t.shape == (0,)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((0,)))
|
|
t = Tensor.rand(0, 0, 0)
|
|
assert t.shape == (0, 0, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((0, 0, 0)))
|
|
|
|
def test_full(self):
|
|
t = Tensor.zeros(3, 2, 0)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
|
|
t = Tensor.full((3, 2, 0), 12)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.full((3, 2, 0), 12))
|
|
|
|
def test_reshape(self):
|
|
t = Tensor.zeros(3, 2, 0)
|
|
a = t.reshape(7, 0)
|
|
assert a.shape == (7, 0)
|
|
np.testing.assert_equal(a.numpy(), np.zeros((7, 0)))
|
|
a = t.reshape(0)
|
|
assert a.shape == (0,)
|
|
np.testing.assert_equal(a.numpy(), np.zeros((0,)))
|
|
with self.assertRaises(AssertionError):
|
|
# cannot reshape from size 0 to size 1
|
|
a = t.reshape(())
|
|
|
|
def test_expand(self):
|
|
t = Tensor.full((1, 2, 0), 12).expand((6, 2, 0))
|
|
assert t.shape == (6, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.full((6, 2, 0), 12))
|
|
|
|
def test_pad(self):
|
|
t = Tensor.rand(3, 2, 0).pad((None, None, (1, 1)), value=1)
|
|
assert t.shape == (3, 2, 2)
|
|
np.testing.assert_equal(t.numpy(), np.ones((3, 2, 2)))
|
|
|
|
t = Tensor.rand(3, 2, 0).pad((None, (1, 1), None), value=1)
|
|
assert t.shape == (3, 4, 0)
|
|
np.testing.assert_equal(t.numpy(), np.ones((3, 4, 0)))
|
|
|
|
t = Tensor.rand(3, 2, 0).pad(((1, 1), None, None), value=1)
|
|
assert t.shape == (5, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.ones((5, 2, 0)))
|
|
|
|
def test_shrink_into_zero(self):
|
|
t = Tensor.rand(3, 4).realize()
|
|
assert t.shrink((None, (2, 2))).realize().shape == (3, 0)
|
|
assert t.shrink(((2, 2), None)).realize().shape == (0, 4)
|
|
assert t.shrink(((2, 2), (2, 2))).realize().shape == (0, 0)
|
|
|
|
def test_cat(self):
|
|
a = Tensor.rand(3, 2, 2)
|
|
b = Tensor.rand(3, 2, 0)
|
|
|
|
t = a.cat(b, dim=2)
|
|
assert t.shape == (3, 2, 2)
|
|
np.testing.assert_equal(t.numpy(), a.numpy())
|
|
|
|
t = b.cat(a, dim=2)
|
|
assert t.shape == (3, 2, 2)
|
|
np.testing.assert_equal(t.numpy(), a.numpy())
|
|
|
|
t = b.cat(b, dim=0)
|
|
assert t.shape == (6, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((6, 2, 0)))
|
|
t = b.cat(b, dim=1)
|
|
assert t.shape == (3, 4, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 4, 0)))
|
|
t = b.cat(b, dim=2)
|
|
assert t.shape == (3, 2, 0)
|
|
np.testing.assert_equal(t.numpy(), np.zeros((3, 2, 0)))
|
|
|
|
def test_elementwise(self):
|
|
a = Tensor.rand(3, 2, 0)
|
|
a_exp = a.exp()
|
|
assert a_exp.shape == (3, 2, 0)
|
|
np.testing.assert_equal(a_exp.numpy(), np.exp(a.numpy()))
|
|
|
|
b = Tensor.rand(3, 2, 0)
|
|
assert b.shape == (3, 2, 0)
|
|
ab = a * b
|
|
assert ab.shape == (3, 2, 0)
|
|
np.testing.assert_equal(ab.numpy(), a.numpy() * b.numpy())
|
|
|
|
mask = (Tensor.rand(3, 2, 0) > 0.5)
|
|
assert mask.shape == (3, 2, 0)
|
|
c = mask.where(a, b)
|
|
assert c.shape == (3, 2, 0)
|
|
np.testing.assert_equal(c.numpy(), np.where(mask.numpy(), a.numpy(), b.numpy()))
|
|
|
|
def test_reduce_over_non_zero(self):
|
|
a = Tensor.ones(3, 2, 0).sum(axis=1)
|
|
assert a.shape == (3, 0)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=1))
|
|
|
|
def test_reduce_over_zero(self):
|
|
a = Tensor.ones(3, 2, 0).sum(axis=2)
|
|
assert a.shape == (3, 2)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2))
|
|
|
|
a = Tensor.ones(3, 2, 0).sum(axis=2, keepdim=True)
|
|
assert a.shape == (3, 2, 1)
|
|
np.testing.assert_equal(a.numpy(), np.sum(np.zeros((3, 2, 0)), axis=2, keepdims=True))
|
|
|
|
def test_reduce_default(self):
|
|
np.testing.assert_equal(Tensor([]).max().numpy(), -float("inf"))
|
|
np.testing.assert_equal(Tensor([]).min().numpy(), float("inf"))
|
|
np.testing.assert_equal(Tensor([]).sum().numpy(), 0)
|
|
np.testing.assert_equal(Tensor([]).mean().numpy(), float("nan"))
|
|
|
|
class TestTensorCreationDevice(unittest.TestCase):
|
|
# test auxiliary tensors are created on the same device
|
|
def test_one_hot(self):
|
|
y = Tensor([1, 2, 3]).to("CLANG")
|
|
x = y.one_hot(10)
|
|
x.realize()
|
|
|
|
class TestTrainMode(unittest.TestCase):
|
|
def test_train_mode(self):
|
|
assert not Tensor.training
|
|
@Tensor.train()
|
|
def f():
|
|
assert Tensor.training
|
|
f()
|
|
assert not Tensor.training
|
|
|
|
class TestInferenceMode(unittest.TestCase):
|
|
def test_inference_mode(self):
|
|
x = Tensor(x_init, requires_grad=True)
|
|
m = Tensor(m_init, requires_grad=True)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
with Tensor.inference_mode():
|
|
tmp = x.mul(m)
|
|
mm = tmp.matmul(W)
|
|
out = mm.relu()
|
|
out = out.sum()
|
|
out.backward()
|
|
assert x.grad is None
|
|
assert m.grad is None
|
|
assert tmp.grad is None
|
|
assert mm.grad is None
|
|
assert W.grad is None
|
|
assert W.requires_grad
|
|
|
|
def test_no_grad_mode_context_manager(self):
|
|
x = Tensor(x_init, requires_grad=True)
|
|
m = Tensor(m_init, requires_grad=True)
|
|
W = Tensor(W_init, requires_grad=True)
|
|
@Tensor.inference_mode()
|
|
def f(x, m, W):
|
|
tmp = x.mul(m)
|
|
mm = tmp.matmul(W)
|
|
out = mm.relu()
|
|
out = out.sum()
|
|
out.backward()
|
|
assert x.grad is None
|
|
assert m.grad is None
|
|
assert tmp.grad is None
|
|
assert mm.grad is None
|
|
assert W.grad is None
|
|
f(x, m, W)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|