Files
tinygrad/examples/hlb_cifar10.py
2023-06-01 21:24:11 -07:00

139 lines
5.7 KiB
Python

#!/usr/bin/env python3
# tinygrad implementation of https://github.com/tysam-code/hlb-CIFAR10/blob/main/main.py
# https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/
# https://siboehm.com/articles/22/CUDA-MMM
# TODO: gelu is causing nans!
import time
import numpy as np
from datasets import fetch_cifar
from tinygrad import nn
from tinygrad.nn import optim
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv
from tinygrad.ops import GlobalCounters
num_classes = 10
# TODO: eval won't work with track_running_stats=False
class ConvGroup:
def __init__(self, channels_in, channels_out, short, se=True):
self.short, self.se = short, se and not short
self.conv = [nn.Conv2d(channels_in if i == 0 else channels_out, channels_out, kernel_size=3, padding=1, bias=False) for i in range(1 if short else 3)]
self.norm = [nn.BatchNorm2d(channels_out, track_running_stats=False, eps=1e-12, momentum=0.8) for _ in range(1 if short else 3)]
if self.se: self.se1, self.se2 = nn.Linear(channels_out, channels_out//16), nn.Linear(channels_out//16, channels_out)
def __call__(self, x):
x = self.conv[0](x).max_pool2d(2)
x = self.norm[0](x).relu()
if self.short: return x
residual = x
mult = self.se2(self.se1(residual.mean((2,3))).relu()).sigmoid().reshape(x.shape[0], x.shape[1], 1, 1) if self.se else 1.0
x = self.norm[1](self.conv[1](x)).relu()
x = self.norm[2](self.conv[2](x) * mult).relu()
return x + residual
class SpeedyResNet:
def __init__(self):
# TODO: add whitening
self.net = [
nn.Conv2d(3, 64, kernel_size=1),
nn.BatchNorm2d(64, track_running_stats=False, eps=1e-12, momentum=0.8),
lambda x: x.relu(),
ConvGroup(64, 128, short=False),
ConvGroup(128, 256, short=True),
ConvGroup(256, 512, short=False),
lambda x: x.max((2,3)),
nn.Linear(512, num_classes, bias=False)
]
# note, pytorch just uses https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html instead of log_softmax
def __call__(self, x): return x.sequential(self.net).log_softmax()
from tinygrad.jit import TinyJit
@TinyJit
def train_step_jitted(model, optimizer, X, Y):
out = model(X)
loss = out.mul(Y).mean()
if not getenv("DISABLE_BACKWARD"):
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.realize()
def fetch_batch(X_train, Y_train, BS):
# fetch a batch
samp = np.random.randint(0, X_train.shape[0], size=(BS))
Y = np.zeros((BS, num_classes), np.float32)
Y[range(BS),Y_train[samp]] = -1.0*num_classes
X = Tensor(X_train[samp])
Y = Tensor(Y.reshape(BS, num_classes))
return X.realize(), Y.realize()
def train_cifar():
Tensor.training = True
BS, STEPS = getenv("BS", 512), getenv("STEPS", 10)
if getenv("FAKEDATA"):
N = 2048
X_train = np.random.default_rng().standard_normal(size=(N, 3, 32, 32), dtype=np.float32)
Y_train = np.random.randint(0,10,size=(N), dtype=np.int32)
X_test, Y_test = X_train, Y_train
else:
X_train, Y_train = fetch_cifar(train=True)
X_test, Y_test = fetch_cifar(train=False)
print(X_train.shape, Y_train.shape)
Xt, Yt = fetch_batch(X_test, Y_test, BS=BS)
model = SpeedyResNet()
# init weights with torch
# TODO: it doesn't learn with the tinygrad weights, likely since kaiming init
if getenv("TORCHWEIGHTS"):
from examples.hlb_cifar10_torch import SpeedyResNet as SpeedyResNetTorch
torch_model = SpeedyResNetTorch()
model_state_dict = optim.get_state_dict(model)
torch_state_dict = torch_model.state_dict()
for k,v in torch_state_dict.items():
old_mean_std = model_state_dict[k].mean().numpy(), model_state_dict[k].std().numpy()
model_state_dict[k].assign(Tensor(v.detach().numpy())).realize()
new_mean_std = model_state_dict[k].mean().numpy(), model_state_dict[k].std().numpy()
print(f"initted {k:40s} {str(model_state_dict[k].shape):20s} from torch mean:{old_mean_std[0]:8.5f} -> {new_mean_std[0]:8.5f} std:{old_mean_std[1]:8.5f} -> {new_mean_std[1]:8.5f}")
exit(0)
if getenv("ADAM"):
optimizer = optim.Adam(optim.get_parameters(model), lr=Tensor([0.001]).realize())
else:
optimizer = optim.SGD(optim.get_parameters(model), lr=0.01, momentum=0.85, nesterov=True)
# 97 steps in 2 seconds = 20ms / step
# step is 1163.42 GOPS = 56 TFLOPS!!!, 41% of max 136
# 4 seconds for tfloat32 ~ 28 TFLOPS, 41% of max 68
# 6.4 seconds for float32 ~ 17 TFLOPS, 50% of max 34.1
# 4.7 seconds for float32 w/o channels last. 24 TFLOPS. we get 50ms then i'll be happy. only 64x off
# https://www.anandtech.com/show/16727/nvidia-announces-geforce-rtx-3080-ti-3070-ti-upgraded-cards-coming-in-june
# 136 TFLOPS is the theoretical max w float16 on 3080 Ti
X, Y = fetch_batch(X_train, Y_train, BS=BS)
for i in range(max(1, STEPS)):
if i%10 == 0 and STEPS != 1:
# use training batchnorm (and no_grad would change the kernels)
out = model(Xt)
outs = out.numpy().argmax(axis=1)
loss = (out * Yt).mean().numpy()
correct = outs == Yt.numpy().argmin(axis=1)
print(f"eval {sum(correct)}/{len(correct)} {sum(correct)/len(correct)*100.0:.2f}%, {loss:7.2f} val_loss")
if STEPS == 0: break
GlobalCounters.reset()
st = time.monotonic()
loss = train_step_jitted(model, optimizer, X, Y)
et = time.monotonic()
X, Y = fetch_batch(X_train, Y_train, BS=BS) # do this here
loss_cpu = loss.numpy()
cl = time.monotonic()
print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {GlobalCounters.mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS")
#train(model, X, Y, optimizer, steps=X.shape[0]//BS, BS=BS)
#evaluate(model, X_test, Y_test)
if __name__ == "__main__":
train_cifar()