Files
tinygrad/examples/efficientnet.py
Jacky Lee 799b3f185a Refactor getenv into helpers (#508)
* Refactor getenv into helpers

* Remove unused os

* Fix default value

* Fix more defaults for CI

* Fix bracket

* Revert changes to openpilot/compile.py

* Use getenv from helpers when possible
2023-01-31 15:09:09 -08:00

91 lines
2.8 KiB
Python

# load weights from
# https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth
# a rough copy of
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
import os
import sys
import io
import time
import numpy as np
np.set_printoptions(suppress=True)
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv
from extra.utils import fetch, get_parameters
from models.efficientnet import EfficientNet
def infer(model, img):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0,x0=(np.asarray(img.shape)[:2]-224)//2
retimg = img = img[y0:y0+224, x0:x0+224]
# if you want to look at the image
"""
import matplotlib.pyplot as plt
plt.imshow(img)
plt.show()
"""
# low level preprocess
img = np.moveaxis(img, [2,0,1], [0,1,2])
img = img.astype(np.float32)[:3].reshape(1,3,224,224)
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape((1,-1,1,1))
img /= np.array([0.229, 0.224, 0.225]).reshape((1,-1,1,1))
# run the net
out = model.forward(Tensor(img)).cpu()
# if you want to look at the outputs
"""
import matplotlib.pyplot as plt
plt.plot(out.data[0])
plt.show()
"""
return out, retimg
if __name__ == "__main__":
# instantiate my net
model = EfficientNet(getenv("NUM", 0))
model.load_from_pretrained()
# category labels
import ast
lbls = fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt")
lbls = ast.literal_eval(lbls.decode('utf-8'))
# load image and preprocess
from PIL import Image
url = sys.argv[1]
if url == 'webcam':
import cv2
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
while 1:
_ = cap.grab() # discard one frame to circumvent capture buffering
ret, frame = cap.read()
img = Image.fromarray(frame[:, :, [2,1,0]])
out, retimg = infer(model, img)
print(np.argmax(out.data), np.max(out.data), lbls[np.argmax(out.data)])
SCALE = 3
simg = cv2.resize(retimg, (224*SCALE, 224*SCALE))
retimg = cv2.cvtColor(simg, cv2.COLOR_RGB2BGR)
cv2.imshow('capture', retimg)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
else:
if url.startswith('http'):
img = Image.open(io.BytesIO(fetch(url)))
else:
img = Image.open(url)
st = time.time()
out, _ = infer(model, img)
print(np.argmax(out.data), np.max(out.data), lbls[np.argmax(out.data)])
print("did inference in %.2f s" % (time.time()-st))
#print("NOT", np.argmin(out.data), np.min(out.data), lbls[np.argmin(out.data)])