mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-08 21:55:14 -05:00
152 lines
5.2 KiB
Python
152 lines
5.2 KiB
Python
from tinygrad.tensor import Tensor
|
|
import tinygrad.nn as nn
|
|
from extra.utils import fetch, fake_torch_load
|
|
from torch.hub import load_state_dict_from_url
|
|
import numpy as np
|
|
|
|
model_urls = {
|
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
}
|
|
|
|
def load_from_pretrained(model, url):
|
|
state_dict = load_state_dict_from_url(url, progress=True)
|
|
#state_dict = fake_torch_load(fetch(url))
|
|
layers_not_loaded = []
|
|
for k, v in state_dict.items():
|
|
par_name = ['model']
|
|
for kk in k.split('.'):
|
|
if kk.isdigit():
|
|
par_name += [f'layers[{int(kk)}]']
|
|
else:
|
|
par_name += [kk]
|
|
par_name = '.'.join(par_name)
|
|
code = f"""
|
|
if np.prod({par_name}.shape) == np.prod(v.shape):\n
|
|
if "fc.weight" in par_name:\n
|
|
{par_name}.assign(Tensor(v.detach().numpy().T))\n
|
|
else:\n
|
|
{par_name}.assign(Tensor(v.detach().numpy()))\n
|
|
else:\n
|
|
layers_not_loaded += [k]"""
|
|
exec(code)
|
|
print(f'Loaded from "{url}".')
|
|
if len(layers_not_loaded) > 0:
|
|
for l in layers_not_loaded:
|
|
print(f'- Layer {l} not loaded.')
|
|
return model
|
|
|
|
class BasicBlock:
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2D(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2D(planes)
|
|
self.downsample = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
self.downsample = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2D(self.expansion*planes)
|
|
)
|
|
|
|
def __call__(self, x):
|
|
out = self.bn1(self.conv1(x)).relu()
|
|
out = self.bn2(self.conv2(out))
|
|
out = out + self.downsample(x)
|
|
out = out.relu()
|
|
return out
|
|
|
|
|
|
class Bottleneck:
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2D(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=stride, bias=False)
|
|
self.bn2 = nn.BatchNorm2D(planes)
|
|
self.conv3 = nn.Conv2d(planes, self.expansion *planes, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2D(self.expansion*planes)
|
|
self.downsample = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
self.downsample = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2D(self.expansion*planes)
|
|
)
|
|
|
|
def __call__(self, x):
|
|
out = self.bn1(self.conv1(x)).relu()
|
|
out = self.bn2(self.conv2(out)).relu()
|
|
out = self.bn3(self.conv3(out))
|
|
out = out + self.downsample(x)
|
|
out = out.relu()
|
|
return out
|
|
|
|
class ResNet:
|
|
def __init__(self, block, num_blocks, num_classes=10):
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, bias=False, padding=3)
|
|
self.bn1 = nn.BatchNorm2D(64)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks-1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = self.bn1(self.conv1(x)).relu()
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
out = out.mean(3).mean(2)
|
|
out = self.fc(out).logsoftmax()
|
|
return out
|
|
|
|
def __call__(self, x):
|
|
return self.forward(x)
|
|
|
|
def ResNet18(num_classes, pretrained=False):
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes)
|
|
if pretrained:
|
|
model = load_from_pretrained(model, model_urls['resnet18'])
|
|
return model
|
|
|
|
def ResNet34(num_classes, pretrained=False):
|
|
model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
|
|
if pretrained:
|
|
model = load_from_pretrained(model, model_urls['resnet34'])
|
|
return model
|
|
|
|
def ResNet50(num_classes, pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes)
|
|
if pretrained:
|
|
model = load_from_pretrained(model, model_urls['resnet50'])
|
|
return model
|
|
|
|
def ResNet101(num_classes, pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
|
|
if pretrained:
|
|
model = load_from_pretrained(model, model_urls['resnet101'])
|
|
return model
|
|
|
|
def ResNet152(num_classes, pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes)
|
|
if pretrained:
|
|
model = load_from_pretrained(model, model_urls['resnet152'])
|
|
return model
|