Files
tinygrad/test/external/fuzz_linearizer.py
Francis Lam 11da65bccd test/external/fuzz_linearizer: add a FUZZ_MAX_SIZE option (#3455)
* test/external/fuzz_linearizer: add a FUZZ_MAX_SIZE option

this allows us to limit the size of the kernel and reduce running
times by avoiding ones that take a long time

* fix spacing and re-order to put parameters together
2024-02-27 07:34:59 -05:00

156 lines
5.5 KiB
Python

import random, traceback, ctypes
from typing import List, Tuple
import numpy as np
from collections import defaultdict
from extra.optimization.helpers import load_worlds, ast_str_to_lin
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.features.search import get_linearizer_actions, bufs_from_lin
from tinygrad.tensor import Tensor
from tinygrad.features.graph import print_tree
from tinygrad.helpers import getenv, from_mv, prod, Context
from tinygrad.device import Device, Compiled
from tinygrad.codegen.linearizer import UOp
def tuplize_uops(uops:List[UOp]) -> Tuple: return tuple([(x.uop, x.dtype, tuple(uops.index(x) for x in x.vin), x.arg) for x in uops])
device = Device[Device.DEFAULT]
def get_fuzz_rawbufs(lin):
rawbufs = bufs_from_lin(lin)
# Reallocate output buffer with additional area to detect out-of-bounds writes.
RED_AREA_SIZE = 1024 if isinstance(device, Compiled) else 0
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True, size=rawbufs[0].size+RED_AREA_SIZE)
with Context(DEBUG=0):
for rawbuf in rawbufs[1:]:
t = Tensor.uniform((rawbuf.size,), dtype=rawbuf.dtype)
rawbuf.copyin(t.realize().lazydata.realized.as_buffer())
return rawbufs
def get_fuzz_rawbuf_like(rawbuf, zero=False, size=None):
rawbuf = type(rawbuf)(Device.DEFAULT, rawbuf.size if size is None else size, rawbuf.dtype)
if zero:
with Context(DEBUG=0):
mv = memoryview(bytearray(rawbuf.size * rawbuf.dtype.itemsize))
ctypes.memset(from_mv(mv), 0, len(mv))
rawbuf.copyin(mv)
return rawbuf
def run_linearizer(lin: Linearizer, rawbufs=None, var_vals=None):
if rawbufs is None: rawbufs = bufs_from_lin(lin)
if var_vals is None: var_vals = {v: v.min for v in lin.ast.vars()}
# TODO: images needs required_optimization
try:
if isinstance(device, Compiled):
prg = device.to_program(lin)
else:
prg = device.get_runner(lin.ast)
except Exception:
print(lin.ast)
print(lin.applied_opts)
traceback.print_exc()
print("COMPILE FAILED!!")
return "COMPILE_ERROR"
try:
prg.exec(rawbufs, var_vals)
except Exception:
print(lin.ast)
print(lin.applied_opts)
traceback.print_exc()
print("EXEC FAILED!!")
return "EXEC_ERROR"
return "PASS"
def fuzz_linearizer(lin: Linearizer):
random.seed(42)
np.random.seed(42)
print_tree(lin.ast)
print(lin.colored_shape())
rawbufs = get_fuzz_rawbufs(lin)
seen_uops = {}
last_lins = [lin]
failures = defaultdict(list)
FUZZ_BEAM = getenv("FUZZ_BEAM", 0)
FUZZ_MAX_SIZE = getenv("FUZZ_MAX_SIZE", 0)
if FUZZ_MAX_SIZE > 0 and prod(lin.full_shape) > FUZZ_MAX_SIZE:
print("skipping large kernel")
return failures
# get baseline unoptimized output
unoptimized = Linearizer(lin.ast)
var_vals = {v: random.randint(v.min, v.max) for v in lin.ast.vars()}
if run_linearizer(unoptimized, rawbufs, var_vals) != "PASS":
failures["BASELINE_ERROR"].append((unoptimized.ast, unoptimized.applied_opts))
return failures
ground_truth = np.frombuffer(rawbufs[0].as_buffer(), rawbufs[0].dtype.np).copy()
for depth in range(getenv("DEPTH", 1 if FUZZ_BEAM else 10)):
next_lins = []
for lin in last_lins:
actions = get_linearizer_actions(lin, include_0=False)
if FUZZ_BEAM: print(f"testing {lin.applied_opts=} with {len(actions)} actions")
if not actions: continue
test_lins = list(actions.values())
if not FUZZ_BEAM: test_lins = [random.choice(test_lins)]
for test_lin in test_lins:
if not FUZZ_BEAM and test_lin.applied_opts: print(f"applied opts: {test_lin.applied_opts}")
# stop if kernel uops repeat
tuops = tuplize_uops(test_lin.linearize().uops)
if tuops in seen_uops:
continue
seen_uops[tuops] = tuple(test_lin.applied_opts)
if not FUZZ_BEAM: print(test_lin.colored_shape())
# get a new output buffer
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True)
var_vals = {v: random.randint(v.min, v.max) for v in test_lin.ast.vars()}
if (msg := run_linearizer(test_lin, rawbufs, var_vals)) != "PASS":
failures[msg].append((test_lin.ast, test_lin.applied_opts))
continue
result = np.frombuffer(rawbufs[0].as_buffer(), rawbufs[0].dtype.np)
try:
# compare memoryviews directly
np.testing.assert_allclose(result, ground_truth, rtol=1e-2, atol=1e-2)
except AssertionError:
print(test_lin.ast)
print(test_lin.applied_opts)
traceback.print_exc()
print("COMPARE FAILED!!")
failures["COMPARE_ERROR"].append((test_lin.ast, test_lin.applied_opts))
continue
next_lins.append(test_lin)
last_lins = next_lins
if FUZZ_BEAM: print(f"depth={depth} total_lins={len(last_lins)} {failures=}")
return failures
if __name__ == "__main__":
ast_strs = load_worlds()
print(f"{len(ast_strs)=}")
tested = 0
failures = defaultdict(list)
for i, ast in enumerate(ast_strs[:getenv("FUZZ_N", len(ast_strs))]):
if "dtypes.image" in ast and Device.DEFAULT != "GPU": continue # IMAGE is only for GPU
print(f"testing ast {i}")
tested += 1
lin = ast_str_to_lin(ast)
for k, v in fuzz_linearizer(lin).items():
for f in v:
failures[k].append(f)
for msg, errors in failures.items():
for i, (ast, opts) in enumerate(errors):
print(f"{msg} {i} AST: {ast}")
print(f"{msg} {i} OPTS: {opts}\n")
print(f"{tested=}")
for msg, errors in failures.items():
print(f"{msg}: {len(errors)}")