mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
115 lines
3.2 KiB
Python
115 lines
3.2 KiB
Python
#!/usr/bin/env python
|
|
import unittest
|
|
import numpy as np
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad import dtypes, TinyJit
|
|
|
|
N = 200 # has to be bigger than the cache to fail
|
|
|
|
class TestAssign(unittest.TestCase):
|
|
def test_simple_assignment(self):
|
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
a.realize()
|
|
b.realize()
|
|
ba1 = a.lazydata.base.realized
|
|
bb1 = b.lazydata.base.realized
|
|
a += b
|
|
a.realize()
|
|
ba2 = a.lazydata.base.realized
|
|
assert ba1 == ba2 and ba1 != bb1
|
|
np.testing.assert_allclose(a.numpy(), (np.arange(N*N)*2).reshape((N,N)))
|
|
|
|
def test_assign_add(self):
|
|
def f(x):
|
|
x += 1
|
|
x.realize()
|
|
x = Tensor([0])
|
|
f(x)
|
|
assert x.item() == 1
|
|
|
|
def test_assign_add_twice(self):
|
|
# NOTE: this has two kernels
|
|
def f(x):
|
|
x += 1
|
|
x += 1
|
|
x.realize()
|
|
x = Tensor([0])
|
|
f(x)
|
|
assert x.item() == 2
|
|
|
|
def test_assign_add_double(self):
|
|
def f(x):
|
|
x += 1
|
|
x.realize()
|
|
x = Tensor([0])
|
|
f(x)
|
|
assert (out:=x.item()) == 1, f"expected 1, got {out}"
|
|
x = Tensor([0])
|
|
f(x)
|
|
assert (out:=x.item()) == 1, f"expected 1, got {out}"
|
|
|
|
def test_assign_add_jit(self):
|
|
@TinyJit
|
|
def f(x):
|
|
x += 1
|
|
x.realize()
|
|
x = Tensor([0])
|
|
for _ in range(5): f(x)
|
|
assert x.item() == 5
|
|
|
|
def test_assign_add_jit_other(self):
|
|
@TinyJit
|
|
def f(x):
|
|
x += 1
|
|
x.realize()
|
|
x = Tensor([0])
|
|
for _ in range(5): f(x)
|
|
y = Tensor([0])
|
|
for _ in range(4): f(y)
|
|
assert y.item() == 4
|
|
|
|
def test_permuted_assignment(self):
|
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
a.realize()
|
|
b.realize()
|
|
ba1 = a.lazydata.base.realized
|
|
bb1 = b.lazydata.base.realized
|
|
a = a.permute(1,0)
|
|
a += b
|
|
a.realize()
|
|
ba2 = a.lazydata.base.realized
|
|
assert ba1 != ba2 and ba1 != bb1
|
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
|
|
|
|
def test_post_permuted_assignment(self):
|
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
a.realize()
|
|
b.realize()
|
|
#GlobalCounters.cache = []
|
|
ba1 = a.lazydata.base.realized # noqa: F841
|
|
bb1 = b.lazydata.base.realized # noqa: F841
|
|
a.assign(a.permute(1,0) + b) # this should not work!
|
|
a.realize()
|
|
ba2 = a.lazydata.base.realized # noqa: F841
|
|
# NOTE: don't test that it's assigned
|
|
#assert ba1 == ba2 and ba1 != bb1
|
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
|
|
|
|
# TODO: is there a way to sneak in a permute such that it returns the wrong answer?
|
|
|
|
def test_cast_assignment(self):
|
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
|
a.realize()
|
|
oba1 = a.lazydata.base.output_buffer
|
|
a.assign(a.cast(dtypes.int32).realize())
|
|
a.realize()
|
|
oba2 = a.lazydata.base.output_buffer
|
|
assert oba1 is None and oba2 is None
|
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N,dtype=np.int32).reshape((N,N)))
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|