Files
tinygrad/test/external/fuzz_linearizer.py

192 lines
7.1 KiB
Python

import random, traceback, ctypes
from typing import List, Tuple, DefaultDict
import numpy as np
from collections import defaultdict
from extra.optimization.helpers import load_worlds, ast_str_to_lin
from tinygrad import Tensor, Device, dtypes
from tinygrad.codegen.linearizer import Linearizer, UOp
from tinygrad.codegen.kernel import Opt
from tinygrad.features.search import get_linearizer_actions, bufs_from_lin
from tinygrad.features.graph import print_tree
from tinygrad.helpers import getenv, from_mv, prod, colored, Context, DEBUG
from tinygrad.ops import LazyOp
def tuplize_uops(uops:List[UOp]) -> Tuple:
return tuple([(x.uop, x.dtype, tuple(uops.index(x) for x in x.vin), x.arg) for x in uops])
device = Device[Device.DEFAULT]
def get_fuzz_rawbufs(lin):
rawbufs = bufs_from_lin(lin)
# Reallocate output buffer with additional area to detect out-of-bounds writes.
RED_AREA_SIZE = 1024
# setting output # TODO: multi-output kernel
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True, size=rawbufs[0].size+RED_AREA_SIZE)
# setting inputs
with Context(DEBUG=0):
for rawbuf in rawbufs[1:]:
if dtypes.is_unsigned(rawbuf.dtype):
data = np.random.randint(0, 100, size=rawbuf.size, dtype=rawbuf.dtype.np)
elif dtypes.is_int(rawbuf.dtype):
data = np.random.randint(-100, 100, size=rawbuf.size, dtype=rawbuf.dtype.np)
elif rawbuf.dtype == dtypes.bool:
data = np.random.choice([True, False], size=rawbuf.size)
else:
data = np.random.uniform(-10, 10, size=rawbuf.size).astype(dtype=rawbuf.dtype.np)
rawbuf.copyin(Tensor(data).realize().lazydata.realized.as_buffer())
return rawbufs
def get_fuzz_rawbuf_like(rawbuf, zero=False, size=None):
rawbuf = type(rawbuf)(Device.DEFAULT, rawbuf.size if size is None else size, rawbuf.dtype)
if zero:
with Context(DEBUG=0):
mv = memoryview(bytearray(rawbuf.size * rawbuf.dtype.itemsize))
ctypes.memset(from_mv(mv), 0, len(mv))
rawbuf.copyin(mv)
return rawbuf
def run_linearizer(lin: Linearizer, rawbufs=None, var_vals=None):
if rawbufs is None: rawbufs = bufs_from_lin(lin)
if var_vals is None: var_vals = {v: v.min for v in lin.ast[0].vars()}
# TODO: images needs required_optimization
try:
prg = device.to_program(lin)
except Exception:
traceback.print_exc()
return "COMPILE_ERROR"
try:
prg(rawbufs, var_vals, wait=True, do_update_stats=False)
except Exception:
traceback.print_exc()
return "EXEC_ERROR"
return "PASS"
def compare_linearizer(lin: Linearizer, rawbufs=None, var_vals=None, ground_truth=None, rtol=1e-2, atol=1e-2):
# TODO: raise specific fuzzing errors instead of str, and propagate the error message
try:
if rawbufs is None:
rawbufs = get_fuzz_rawbufs(lin)
else:
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True) # get a new output buffer
except BaseException:
return ("RAWBUFS_ERROR", rawbufs, var_vals, ground_truth,)
if var_vals is None:
# TODO: handle symbolic max case
var_vals = {v: random.randint(v.min, v.max if isinstance(v.max, int) else v.min) for v in lin.ast[0].vars()}
if ground_truth is None:
unoptimized = Linearizer(*lin.ast)
unoptimized.required_optimizations()
if run_linearizer(unoptimized, rawbufs, var_vals) != "PASS":
return ("BASELINE_ERROR", rawbufs, var_vals, ground_truth,)
ground_truth = np.frombuffer(rawbufs[0].as_buffer(), rawbufs[0].dtype.np).copy()
rawbufs[0] = get_fuzz_rawbuf_like(rawbufs[0], zero=True) # get a new output buffer
if (run_msg := run_linearizer(lin, rawbufs, var_vals)) != "PASS":
return (run_msg, rawbufs, var_vals, ground_truth,)
result = np.frombuffer(rawbufs[0].as_buffer(), rawbufs[0].dtype.np)
try:
np.testing.assert_allclose(result, ground_truth, rtol=rtol, atol=atol)
except AssertionError as e:
if DEBUG >= 2:
print(f"COMPARE_ERROR details: {e}")
mismatch_indices = np.where(~np.isclose(result, ground_truth, rtol=rtol, atol=atol))
mismatched_result = result[mismatch_indices]
mismatched_ground_truth = ground_truth[mismatch_indices]
for i, idx in enumerate(mismatch_indices[0]):
print(f"mismatch at {idx=}: result={mismatched_result[i]} <> ground_truth={mismatched_ground_truth[i]}")
return ("COMPARE_ERROR", rawbufs, var_vals, ground_truth,)
return ("PASS", rawbufs, var_vals, ground_truth,)
def fuzz_linearizer(lin: Linearizer):
SEED = getenv("SEED", 42)
random.seed(SEED)
np.random.seed(SEED)
for op in lin.ast: print_tree(op)
print(lin.colored_shape())
seen_uops = {}
last_lins = [lin]
failures:DefaultDict[str, List[Tuple[Tuple[LazyOp,...],List[Opt]]]] = defaultdict(list)
rawbufs, var_vals, ground_truth = None, None, None
FUZZ_BEAM = getenv("FUZZ_BEAM", 0)
FUZZ_MAX_SIZE = getenv("FUZZ_MAX_SIZE", 0)
if FUZZ_MAX_SIZE > 0 and prod(lin.full_shape) > FUZZ_MAX_SIZE:
print("skipping large kernel")
return failures
for depth in range(getenv("DEPTH", 1 if FUZZ_BEAM else 10)):
next_lins = []
for lin in last_lins:
actions = get_linearizer_actions(lin, include_0=False)
if FUZZ_BEAM: print(f"testing {lin.applied_opts=} with {len(actions)} actions")
if not actions: continue
test_lins = list(actions.values())
if not FUZZ_BEAM: test_lins = [random.choice(test_lins)]
for test_lin in test_lins:
if not FUZZ_BEAM and test_lin.applied_opts: print(f"applied opts: {test_lin.applied_opts}")
# stop if kernel uops repeat
tuops = tuplize_uops(test_lin.linearize().uops.uops)
if tuops in seen_uops:
continue
seen_uops[tuops] = tuple(test_lin.applied_opts)
if not FUZZ_BEAM: print(test_lin.colored_shape())
(msg, rawbufs, var_vals, ground_truth) = compare_linearizer(test_lin, rawbufs, var_vals, ground_truth)
if msg != "PASS":
print(test_lin.ast)
print(test_lin.applied_opts)
print(msg)
failures[msg].append((test_lin.ast, test_lin.applied_opts))
continue
next_lins.append(test_lin)
last_lins = next_lins
if FUZZ_BEAM: print(f"depth={depth} total_lins={len(last_lins)} {failures=}")
return failures
if __name__ == "__main__":
ast_strs = load_worlds(filter_reduce=False, filter_novariable=False)
print(f"{len(ast_strs)=}")
tested = 0
failed_ids = []
failures = defaultdict(list)
for i, ast in enumerate(ast_strs[:getenv("FUZZ_N", len(ast_strs))]):
if (nth := getenv("FUZZ_NTH", -1)) != -1 and i != nth: continue
if "dtypes.image" in ast and Device.DEFAULT != "GPU": continue # IMAGE is only for GPU
print(f"testing ast {i}")
tested += 1
lin = ast_str_to_lin(ast)
fuzz_failures = fuzz_linearizer(lin)
if fuzz_failures: failed_ids.append(i)
for k, v in fuzz_failures.items():
for f in v:
failures[k].append(f)
for msg, errors in failures.items():
for i, (ast, opts) in enumerate(errors):
print(f"{msg} {i} AST: {ast}")
print(f"{msg} {i} OPTS: {opts}\n")
print(f"{tested=}")
if failures:
print(f"{failed_ids=}")
for msg, errors in failures.items():
print(f"{msg}: {len(errors)}")
else:
print(colored("all passed", "green"))