Files
tinygrad/test/test_speed_v_torch.py
2023-03-10 09:44:12 -08:00

222 lines
8.2 KiB
Python

import os
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"
import unittest
import torch
torch.set_num_threads(1)
import time
import numpy as np
np.set_printoptions(linewidth=160)
from functools import partial
from tinygrad.ops import GlobalCounters
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d
from tinygrad.helpers import colored, getenv, DEBUG
from tinygrad.jit import TinyJit
IN_CHANS = [int(x) for x in getenv("IN_CHANS", "4,16,64").split(",")]
torch_device = torch.device('mps' if getenv("MPS", 0) else ('cuda' if getenv("TORCHCUDA", 0) else 'cpu'))
def colorize_float(x):
ret = f"{x:7.2f}x"
if x < 0.75:
return colored(ret, 'green')
elif x > 1.5:
return colored(ret, 'red')
else:
return colored(ret, 'yellow')
save_ops, save_mem = 0, 0
CNT = 8
def helper_test_speed(f1, *args):
global save_ops, save_mem
ets = []
ret = None
for _ in range(CNT):
del ret
args = [(x+1).realize() if isinstance(x, Tensor) else (None if x is None else (x+1)) for x in args] # cache defeats
# force syncing
[x.numpy() if isinstance(x, Tensor) or str(torch_device) == "cpu" else x.cpu().numpy() for x in args if x is not None]
GlobalCounters.global_ops = 0
GlobalCounters.global_mem = 0
if DEBUG >= 4: print("benchmark start")
st = time.monotonic()
ret = f1(*args)
# not ideal, it's copying (sometimes). why is this so slow in tinygrad?
if isinstance(ret, Tensor) or str(torch_device) == "cpu": ret.numpy()
else: ret.cpu().numpy()
et = (time.monotonic() - st) * 1000
ets.append(et)
if DEBUG >= 4: print("benchmark stop")
if GlobalCounters.global_ops:
save_ops, save_mem = GlobalCounters.global_ops, GlobalCounters.global_mem
return ret.cpu().numpy(), np.min(ets)
def helper_test_generic_square(name, N, f1, f2, onearg=False):
torch.manual_seed(0)
torch_a = (torch.rand(N, N) - 0.5).to(torch_device)
torch_b = (torch.rand(N, N) - 0.5).to(torch_device) if not onearg else None
tiny_a = Tensor(torch_a.cpu().numpy())
tiny_b = Tensor(torch_b.cpu().numpy()) if not onearg else None
helper_test_generic(f"{name:30s} {N:4d}x{N:4d}", f1, (torch_a, torch_b), TinyJit(lambda a,b:f2(a,b).realize()), (tiny_a, tiny_b))
prefix = None
def helper_test_generic(name, f1, f1_args, f2, f2_args):
global prefix
with torch.no_grad():
val_torch, et_torch = helper_test_speed(f1, *f1_args)
val_tinygrad, et_tinygrad = helper_test_speed(f2, *f2_args)
desc = "faster" if et_torch > et_tinygrad else "slower"
flops = save_ops*1e-6
mem = save_mem*1e-6
print(f"{prefix}{name:40s} {et_torch:7.2f} ms ({flops/et_torch:8.2f} GFLOPS {mem/et_torch:8.2f} GB/s) in torch, {et_tinygrad:7.2f} ms ({flops/et_tinygrad:8.2f} GFLOPS {mem/et_tinygrad:8.2f} GB/s) in tinygrad, {colorize_float(et_tinygrad/et_torch)} {desc} {flops:7.2f} MOPS {mem:7.2f} MB")
prefix = " "
np.testing.assert_allclose(val_tinygrad, val_torch, atol=1e-4, rtol=1e-3)
class TestSpeed(unittest.TestCase):
def setUp(self):
global prefix
prefix = " " if prefix is None else ""
return super().setUp()
def test_sub(self):
def f(a, b): return a-b
helper_test_generic_square('sub', 4096, f, f)
def test_pow(self):
def f(a, b): return a.pow(b)
helper_test_generic_square('pow', 2048, f, f)
def test_sum(self):
def f(a, b): return a.sum()
helper_test_generic_square('sum', 2048, f, f, onearg=True)
helper_test_generic_square('sum', 4096, f, f, onearg=True)
def test_partial_sum(self):
R = 256
def f(a, b): return a.reshape(int(4096//R), int(4096*R)).sum(axis=1)
helper_test_generic_square('partial_sum', 4096, f, f, onearg=True)
def test_array_packing(self):
N = 2048
def f(a, b): return a.reshape(N, N // 32, 32).permute(1,0,2).contiguous()
helper_test_generic_square('array_packing', N, f, f, onearg=True)
def test_permute(self):
for N in [1024, 4096]:
# this is a 64MB tensor, M1 L1 cache is 128kB
# to fit easily in L1, rotations should be 128x128 chunks. 128x128 is also the AMX size
def f(a, b): return a.permute(1,0).contiguous()
helper_test_generic_square('permute', N, f, f, onearg=True)
def test_double_permute(self):
N = 64
torch.manual_seed(0)
torch_a = (torch.rand(N, N, N, N) - 0.5).to(torch_device)
tiny_a = Tensor(torch_a.cpu().numpy())
def f(a): return a.permute(1,0,3,2).contiguous()
helper_test_generic(f"double_permute {tiny_a.shape}", f, (torch_a,), TinyJit(lambda a: f(a).realize()), (tiny_a,))
def test_neg(self):
def f(a, b): return -a
helper_test_generic_square('neg', 4096, f, f, onearg=True)
def test_exp(self):
def f(a, b): return a.exp()
helper_test_generic_square('exp', 2048, f, f, onearg=True)
def test_relu(self):
def f(a, b): return a.relu()
helper_test_generic_square('relu', 4096, f, f, onearg=True)
def test_max(self):
def f(a, b): return a.max()
helper_test_generic_square('max', 4096, f, f, onearg=True)
def test_mul_sum(self):
def f(a, b): return (a*b).sum()
helper_test_generic_square('mul_sum', 4096, f, f)
def test_add(self):
for N in [1, 1024, 4096]:
def f(a, b): return a + b
helper_test_generic_square('add', N, f, f)
def test_add_constant(self):
def f(a, b): return a+2.0
helper_test_generic_square('add_constant', 4096, f, f, onearg=True)
def test_add_sq(self):
def f(a, b): return a*a + b*b
helper_test_generic_square('add_sq', 4096, f, f)
def test_gemm(self):
def f(a, b): return a @ b
helper_test_generic_square('gemm', 512, f, f)
def test_gemm_unrolled(self):
N = 512
def f1(a, b): return a@b.T
def f2(a, b): return (a.reshape(N, 1, N).expand(N, N, N) * b.reshape(1, N, N).expand(N, N, N)).sum(axis=2)
helper_test_generic_square('gemm_unrolled', N, f1, f2)
def test_gemm_unrolled_permute_l(self):
N = 512
def f1(a, b): return a.T@b.T
def f2(a, b): return (a.permute(1,0).reshape(N, 1, N).expand(N, N, N) * b.reshape(1, N, N).expand(N, N, N)).sum(axis=2)
helper_test_generic_square('gemm_unrolled_permute_l', N, f1, f2)
def test_gemm_unrolled_permute_r(self):
N = 512
def f1(a, b): return a@b
def f2(a, b): return (a.reshape(N, 1, N).expand(N, N, N) * b.permute(1,0).reshape(1, N, N).expand(N, N, N)).sum(axis=2)
helper_test_generic_square('gemm_unrolled_permute_r', N, f1, f2)
def test_gemm_unrolled_permute_lr(self):
N = 512
def f1(a, b): return a.T@b
def f2(a, b): return (a.permute(1,0).reshape(N, 1, N).expand(N, N, N) * b.permute(1,0).reshape(1, N, N).expand(N, N, N)).sum(axis=2)
helper_test_generic_square('gemm_unrolled_permute_lr', N, f1, f2)
def test_openpilot_conv2d(self):
bs, in_chans, out_chans = 1,12,32
torch.manual_seed(0)
torch_dat = torch.rand(bs, 64, 128, 12).to(torch_device)
torch_conv = torch.nn.Conv2d(in_chans, out_chans, 3, bias=None, padding=1).to(torch_device)
tiny_dat = Tensor(torch_dat.cpu().numpy())
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None, padding=1)
tiny_conv.weight = Tensor(torch_conv.weight.detach().cpu().numpy())
def f1(torch_dat): return torch_conv(torch_dat.permute(0,3,1,2))
def f2(tiny_dat): return tiny_conv(tiny_dat.permute(0,3,1,2)).realize()
helper_test_generic(f"conv bs:{bs:3d} chans:{in_chans:3d} -> {out_chans:3d}", f1, (torch_dat,), TinyJit(f2), (tiny_dat,))
def test_conv2d(self):
torch.manual_seed(0)
for bs in [32]:
for in_chans in IN_CHANS:
for out_chans in [32]:
img_size = 34
torch_dat = torch.rand(bs, in_chans, img_size, img_size).to(torch_device)
torch_conv = torch.nn.Conv2d(in_chans, out_chans, 3, bias=None).to(torch_device)
tiny_dat = Tensor(torch_dat.cpu().numpy())
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None)
tiny_conv.weight = Tensor(torch_conv.weight.detach().cpu().numpy())
def f1(torch_dat): return torch_conv(torch_dat)
def f2(tiny_dat): return tiny_conv(tiny_dat).realize()
helper_test_generic(f"conv bs:{bs:3d} chans:{in_chans:3d} -> {out_chans:3d}", f1, (torch_dat,), TinyJit(f2), (tiny_dat,))
if __name__ == '__main__':
unittest.main()