Files
tinygrad/extra/optimization/greedy.py
George Hotz 41bfeb2c1e start work on auto opt (#2034)
* start work on auto opt

* lin failure

* not beating hcopt

* greedy

* timing is fast

* codegen.search

* greedy search in handcode_opt

* track running gflops

* clean up those files

* no failure
2023-10-11 12:54:53 -07:00

44 lines
1.5 KiB
Python

import numpy as np
import random
from copy import deepcopy
from tqdm import tqdm
from tinygrad.helpers import dedup, ansilen
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.tensor import Tensor
from tinygrad.codegen.search import get_linearizer_actions, time_linearizer, bufs_from_lin, actions
#from extra.optimization.pretrain import PolicyNet
from extra.optimization.helpers import load_worlds, ast_str_to_lin, lin_to_feats
if __name__ == "__main__":
# load worlds
ast_strs = load_worlds()
for ep_num,ast_str in enumerate(ast_strs):
print("\nEPISODE", ep_num)
lin = ast_str_to_lin(ast_str)
linhc = deepcopy(lin)
linhc.hand_coded_optimizations()
if not all(x in actions for x in linhc.applied_opts):
print("skipping", linhc.colored_shape())
continue
rawbufs = bufs_from_lin(lin)
tm1, gf1 = time_linearizer(linhc, rawbufs)
print(f"{tm1:10.2f}", linhc.colored_shape(), f"with {len(linhc.applied_opts)} actions from {len(actions)} action space")
while 1:
tm, gflops = time_linearizer(lin, rawbufs)
print(f"{tm:10.2f}", lin.colored_shape())
acted_lins = get_linearizer_actions(lin)
if len(acted_lins) == 0: break
best_tm, best_lin = tm, lin
for l in list(acted_lins.values()):
tm, gflops = time_linearizer(l, rawbufs)
if tm < best_tm: best_tm, best_lin = tm, l
if lin == best_lin: break
lin = best_lin